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Abstract

In this Thesis, a data analysis is conducted on over 1 million programs written in Hedy to
better understand the struggles novice programmers face when learning to program. Hedy is a
gradual programming language aimed at novice programmer programming, which introduces
new programming concepts gradually to reduce cognitive load while learning. We find a pat-
tern of re-submitting identical faulty code, not reading the error messages and high drop-out
rates. Statistics that verify the difficulty novice programmers encounter when learning a pro-
gramming language, a problem that has been studied and verified by similar research. While
Hedy is developed to make learning to program easier for starting programmers, we argue that
improvements can still be made.

We propose a new model of returning error messages with the aim to solve the found patterns
and difficulties of novice programmers: The Gradual Feedback Model. The model proposes a
different way of returning errors, making them dependent on the behaviour and progress of
the programmer. The model keeps track of a feedback level and returns a corresponding error
message. Varying in levels of helpfulness for solving the error at hand. Through enforced error
reading and duplicate faulty code prevention novice programmers are stimulated to read and
interact with the error messages. It is implemented within the Hedy web environment and tested
through A/B testing. While the focus is on Hedy the model itself is language-independent and
can be implemented in any text-based programming language such as Python.

We find a decrease in error rate by users using the Gradual Feedback Model. Through sta-
tistical analysis we conclude on a definitive statistical significance of the model. No decrease
in drop-out rate is found. User usefulness is gathered through yes/no questions on the model
interaction. A decreasing usefulness rate is found where users rate the model as less useful after
multiple interactions. The usefulness as rated by users differs greatly for the different levels of
feedback and does provide enough insights for future improvements of the model. Also a low
interaction rate with the model is found, whereas less then 40% of the users presented with
the model actually interact with the feedback. The cause of this low rate is unknown and an
interesting starting point for future research. Further research through observational studies
should be conducted to get more insights in the usefulness of the model as well as enabling
the improvement of the different feedback levels.
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1 Introduction

For a long time, computer programming has been seen as an exclusive STEM skill. Highly
correlated with the ability to solve problems systematically. For which, it was seen as similar
to solving problems in mathematics. However, programming is more than solving problems.
Programming a solution is not only about solving the problem, but beforehand a long learning
curve of syntax, errors, exceptions and other programming specific context has to be learned.
Reading, understanding and solving error messages are a skill that isn’t correlated with the
aspects of STEM skills and shouldn’t be approached like a mistake in a mathematical equation.
So why is the learning of programming still approached like an exclusive STEM skill? [17]

In this research, we take an in-depth look at the usefulness of error messages in program-
ming languages. With the aim to better understand the bottlenecks of novice programmers
when learning to program. First, an introduction is given in the research already done on gen-
eral mistakes made by programmers, especially novice programmers. Then we look at Hedy, a
newly introduced gradual programming language, with the aim to solve (some of) these bot-
tlenecks and take a different approach to the learning of programming. Hedy is developed with
the novice programmer in mind, bridging the gap from no programming experience towards
Python programming by reducing cognitive load on the learning journey. It is structured in
levels, whereas in each level new keywords and programming concepts are introduced. A data
analysis is performed on the Hedy programs dataset, containing over 1 million programs. This
to get insights in the mistakes made within the Hedy programming language and the ways
users respond to and interact with error messages.

Then we look at related work on improving error messages and introduce a new way of
given error feedback: the Gradual Feedback Model (GFM). A model for which the interpreter
or compiler keeps track of the mistakes of the user and alters the message on their under-
standing. Giving more explanatory errors, general programming tips and code suggestions by
consecutive mistakes. Through the use of a Feedback Level, the needs on error interaction
are scaled to the user. Identical (wrong) code prevention and enforced error reading are im-
plemented by keeping track of the user’s interpreter interaction. The model is implemented
within the Hedy web environment, but the concept itself is largely language-independent and
can be implemented in any text-based programming language, such as Python.

Further on, the implementation of the model is discussed. Comparing the current error han-
dling with the new GFM approach. Giving a code explanation of the implementation done. An
A/B test is performed on the Hedy environment with and without the GFM implementation.
The results are divided into two analysis: A comparison analysis and a usefulness analysis. In
the first one, an analysis is done comparing general coding statistics with and without the GFM
implementation. Such as error rate and drop-out rate. In the usefulness analysis, an analysis
is performed on the user feedback. Analysing the interaction rate and usefulness rate of the
model in general as well as the specific levels of feedback. This is followed a conclusion on the
performance of the model. The limitations of the model and the implementation are discussed
as well. Lastly, this Thesis finishes with a suggestion for future work and a general conclusion
of the work done.
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2 Programming: Mistakes we make

In this section, we look at programming mistakes made by novice programmers, independent
of programming language. The focus of this section is on starting programmers due to this
being the target group of the Hedy programming language as well as this research. We take
a closer look at these mistakes to get a better understanding of the learning bottlenecks.
Learning to program is like learning a new language, with one big difference: the programming
language doesn’t try to understand you. Where in a spoken conversation people might ask for
clarification when something is unclear, programming languages don’t: they simply respond
to your commands. This is an important misconception that arisen in the earliest steps of
programming. As stated by R. Pea: “First, we need to be aware of the pervasiveness of pro-
gramming misunderstandings that arise from the tacit applications of human conversational
metaphor to programming.” [19]

It is not the case that novice programmers think that the computer has an actual mind
of his own. The understanding of the concept that computers are unable to think for them-
selves seems to be understood well. However, novice programmers tend to assume some type
of intelligence or co-operation of the computer. Approaching it more like a natural language
conversation than a command-like conversation. This and other well-known misconception are
discussed in this section and will help us better understand the struggles of novice programmers
that have led to the structure of Hedy. Much research has been done in analysing the mistakes
of novice programmers in a larger scale such as [2][5][6] as well as more general mistakes of
professional programmers that might introduce vulnerabilities into programs [4].

2.1 Novice programmers

In this subsection, we focus on mistakes made by novice programmers. We only look at language
independent errors; namely, the errors that are possible to occur in any text-based programming
language, such as syntax errors and logic errors. For example, memory management errors
would not occur in languages that automatically handle memory management, such as Java
and Python. While not all syntax errors might be language-independent, we focus on the ones
that are. Other errors found in research are left out of scope. Monika Kaczorowska researched
programming mistakes made by first and second year IT students programming in the C++
language. A total of 602 programs is collected from 43 students. The same 43 students account
for the data on the first as well as the second year students. She found that the mistakes can be
classified within three categories: syntax errors, memory management errors and logic errors.
[14] A (abbreviated) overview of the most frequent errors found is shown in Table 1. Note:
a shadowing variable is a variable that is declared outside a function or loop and then again
inside a function or loop. This way, the firstly declared variable is and can never be used within
the scope of the function or loop. They found that more mistakes are made by first year
students than second year students. And the most problematic errors seem to be related to
memory management, whereas second year students also had difficulty with pointers. It should
be noted that both these errors would not apply for programming in either Python or Hedy
because these constructs are either handled automatically by the interpreter (memory) or are
not available (pointers).
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Syntax error Logic error
Invalid number of parameters passed to function Shadowing variable
Variable names containing the space Incorrect condition in loop
No brackets or odd number of brackets Incorrect initial value of variable
Visibility of variables in switch case section Uninitialised variable

Table 1: General programming errors found by 1st and 2nd year IT students [14]

When we take a closer look at the table, we notice a pattern: Some common mistakes are not
a problem of misconceptions or misunderstanding of the logic behind programming. We can
classify all syntax errors as non-logic errors; occurring due to structures non-relevant for the
logic behind the program. In the case of the logic errors, we can also argue that the errors of
either a Shadow or Uninitialised variable are due to syntax barriers and not due to logic. It
might be better to classify them as semantic errors (correct syntax but incorrect use). How-
ever, for unknown reasons semantic errors were not a category in the research and possible
semantic errors are classified as syntax errors.

Altadmri and Brown analysed 37 million compilations from over 250.000 students program-
ming in Java. The data stemmed from the Blackbox dataset, which was gathered from users
of the BlueJ Java IDE. An IDE specifically developed for novice programmers. [16] They gen-
eralize the mistakes made into 18 mistakes, splitting into three categories: misunderstanding
syntax, type errors and other semantic errors. An example of a semantic error in Java is calling
a non-void function but not using or storing the return value. They found that syntax errors
such as mismatched brackets and quotations are the most frequent ones amongst novice pro-
grammers, but also the quickest to be fixed. One interesting finding is that the frequency of
semantic errors increases over time, while the frequency of syntax errors decreases. With which
they suggest that semantic errors are a more serious challenge to solve for novice programmers
than syntax errors.

While less common, research in errors made by novice programmers in Python has also been
done. A. Junior et al. focus on the impact of making mistakes on the programming abilities
is children age 14 till 16. By manually checking code submissions they find 31 mistakes which
could be seen as a pattern, 15 of these are found when analysing the dataset using a code
analyser. It should be noted that Python 2.7 is used, which is outdated and has differences
with the currently used Python 3. They found the most common mistakes are: unused vari-
ables, redundant float conversion and wrong input reading. Whereas, we can argue that the
unused variable mistake is not actually an error because it doesn’t result in one. However, it
is a programming mistake and creates unnecessary cluttered code. [13]

One large research in Python errors has been done by Tobias Kohn. He states that Python
has for long stated out of the discussion in the field of compiler error messages. Which can
be confirmed by the relatively low amount of research in Python errors. He analysed a total
of 4091 error instances, of which 1233 are classified as minor. It is classified as minor if it
could be solved by a simple edit; for example, replacing one character or swapping two char-
acters. In this research context the scope of mistakes is on the SyntaxError, IndentationError,
NameError, and TypeError. The most common errors can be found in Table 2. He found that
a considerable part of errors are due to minor mistakes and easy to fix. Stating that the reason
why enhancing error messages often appears to be inefficient is due to error being easy to fix
or not being captured within the error message at all.
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Most common errors
Name Error: Cannot Find Name
Wrong/Inconsistent Indentation
TypeError
Missing Comma or Operator
Missing/Mismatched Brackets

Table 2: Most common Python errors found by Tobias Kohn [15]

Lastly, a more recent research in Python errors by novice programmers has been performed
by Rebecca Smit and Scott Rixner. [22] Data was gathered from an online Python course for
which the students coded in CodeSkulptor, a browser-based IDE. The dataset contains over
330.000 implementations from over 95.000 development chains. Interesting in their research
is their focus on other facets of the error landscape than the frequency distribution of errors,
the aspect that is mostly researched in other found work. They look at aspects such as the
duration and evolution of errors. They found that TypeErrors are most likely to occur as well
as re-occur within the development chain. While SyntaxErrors where common as well, but did
occur on smaller subsets of the chain. Interestingly, IndexErrors and KeyErrors do occur less
but appear longer within a chain. Implying that students have more difficulty solving these
errors.

When leaving out the language-dependent mistakes and errors, a pattern can be found over
the different research analysed on programming mistakes. [13][14][15][16][22] Several mistakes
that can be found across all research are trying to use a non-existing variable, having issues
with mismatching brackets as well as wrongly initialising a variable. Either through a wrong
type or starting value. Mistakes when, thinking about the different programming languages,
are difficult to prevent. But, for unknown reasons, novice programmers seem to struggle with
these. Other interesting findings are the difference in difficulty of the type of errors. While
some types are found and solved frequently, others occur less but are harder to solve. Insights
which are useful when implementing error messages. Extra focus and attention should aim at
these hard to solve errors to better facilitate novice programmers on their error solving journey.
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3 Gradual programming language: Hedy

In this section, the gradual programming language Hedy is discussed. Hedy is a text-based
programming language developed by Hermans in 2020. [12] The unique aspect of Hedy is the
syntax development: the language gets gradually more complex and complete while the stu-
dent is learning. Starting at level 1 with an option to print text and gradually introducing new
concepts and more python-like syntax structures along with the levels. Limiting the cognitive
load on students that traditional programming languages introduce due to the large amount
of syntax to be remembered at once as well as the programming concepts themselves. [23] It
should be noticed that the target group of the programming language are novice programmers,
especially children. While the language can feel like a tutorial due to the way you can advance
a level to be able to use more complex features: it is still a Turing-complete programming
language which can be used to create any program in mind.

The syntax of Hedy is gradually moving towards the Python syntax: together with the learners.
For which, it might be best to classify the language as introduction to programming in Simpli-
fied Python Syntax. Leaving out aspects that increase the cognitive load but don’t contribute
to the actual learning of programming. It is built upon Python, and the Hedy code is parsed
to Python before being executed. One important note on this level structure is that code
that executes successfully on one level might give an error on another level. This due to the
changing syntax of core aspects, such as print. For example, in level 1 a text is printed using
the print keyword combined with the string whereas from level 3 and on the string should be
placed between quotation marks. See the examples below:

Printing a string in level 1:

print Hello world!

Printing a string in level 3:

print 'Hello world!'

Hedy is open-source and available through GitHub. [10] It can be either run locally or on the
Hedy web environment at http://hedycode.com/. At the web environment, users are able
to get familiar with programming concepts through Adventure Mode. Short exercises that get
more complex and functional throughout the levels, together with gradually expanding syntax.
In addition, users can create an account and store created programs online. An visual overview
of the web environment can be found in Figure 1.

One can understand that this gradual concept might complicate programming when exe-
cuting code within the levels in a non-linear structure. Because correctly executing code in
one level might run into errors at another level. Therefore, more experienced programmers
should keep the learning aspect in mind, trying to place themselves in the position of a novice
programmer who starts at level 1. Programmers who want to program as much functionality
as possible should read the syntax and start programming in the highest available level, or
start programming in Python.

10
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3.1 Level structure

The Hedy language is originally structured into a total of 13 levels. However, currently 22
levels have been implemented due to ongoing development on the language and other parallel
research on expanding the levels. In this subsection, a short introduction of each level is given
to create a better understanding of the language. Here, and in the rest of this research, we
focus on the first 13 levels. This decision is made due to the original Hedy paper proposing and
describing the first 13 levels. For these levels the structure is known, and they are no longer
subject to change due to ongoing research. A more in-depth explanation of the level structure
of Hedy can be found in either the original paper by Hermans or the Hedy website. [12][11]

Level Main concept(s) introduced
1 Printing and input
2 Variable assignment
3 Quotation marks, types
4 If and else-statements
5 Repetition
6 Calculations
7 Code blocks
8 For-loops
9 Colons
10 Nested repetition / selection
11 Round brackets
12 Rectangular brackets
13 Replacing is with = or ==

Table 3: Hedy level structure for the first 13 levels [12]

Figure 1: Hedy web environment overview

11



4 A Data Analysis: Hedy

In this section the Hedy dataset is introduced, discussed and analysed. The dataset contains
all Hedy programs executed through the Hedy web environment, as well as additional values
which will be discussed more in-depth further on. To get a better understanding of the mis-
takes made by novice programmers as well as common mistakes made within Hedy we analyse
the currently available data. Each program run through the Hedy web environment is logged
and stored in a dataset. This is also the case for submissions that results in an error or don’t
contain any code at all. At the moment of writing, a total of 1, 209, 123 programs is created
in level 1 through level 13. Each logging, row in the dataset, consists of 14 values, for which
an overview can be found in Table 4. For each value, the data type and a short explanation of
the value is given as well. Throughout the development of Hedy the structure and amount of
values being logged has changed multiple times. Therefore, not all variables have been present
since the start of the logging process. A random row from the dataset can be found in Table
5. An explanation of relevance of each value is given in this section.

The session value contains a unique hash-values to keep track of the current user. Multi-
ple code submissions by the same user in the same session will be stored with the same session
value. The date value is a timestamp of the code submission. The level value is the Hedy level
the code is submitted in. This is important because the Hedy syntax differs for each level.
The most relevant information is stored in the code value, which contains the code of the
submission. The server error value contains the server error if any error occurred. Otherwise,
this value will be -. Any error that occurs during the parsing will result in a server error. So
automatically, all programming errors will be logged in this value as well. The version value
contains the version ID of the Hedy environment in which the code is submitted, as well as
the date of version deployment. The submission id value is also a unique hash-value, however
where the session value can occur multiple times, this value is unique for each submission.
Which can be seen as the identifier of the logging, or primary key from a database perspective.
The lang value contains the currently selected language in the Hedy web environment. Note
that the programming language itself is language-independent, but the explanation, example
code and error message is translated for each language. It is stored as the abbreviated language
of choice, e.g. nl or de. The demo value is an indication if example code is run, which can
be selected from the interface choosing one of the examples. Similar to the start value, which
stores if the starting code of the current level is submitted.

In this section, the data is used to get insight in the mistakes made by programmers. First,
a general analysis is performed, visualising general statistics such as programs and error per-
centages per level. We then look at the program distributions, such as the word count and
concept usage. Followed by a drop-out analysis on each level. We assume that dropping out
is an important indicator of insufficient help on solving the current errors. Then, an identical
code analysis is done. Analysing the patterns of consecutive identical (faulty) code submis-
sions. Finally, we look at the steps till solve, analysing the amount of faulty submissions before
a correct one is made. The dataset is a .csv-file and all analysis is performed using Python
3.8.3. Through the use of the Pandas library, the dataset is pre-processed and visualized with
either the Matplotlib or Seaborn library. All code is run locally using Jupyter Notebook on
macOS Big Sur 11.4 and available on request.

12



Name Data type Value explanation
Session String Unique string for each session
Date Date Date and time of code submission
Level Integer Level of code submission
Code String The actual Hedy code
Server error String Server error if occurred, otherwise a “-”
Client error String Client error if occurred, otherwise a “-”
Version String Version of Hedy on which the code is executed
Submission id String Unique ID of each code submission
Lang String Language of Hedy web environment
Email String User email address if logged in, otherwise a “-”
Username String User username if logged in, otherwise a “-”
Is test Boolean True if logged on test environment, otherwise None
Demo Boolean If the submitted code is an example one
Start Boolean If the submitted code is a starting one

Table 4: Features logged and stored at each code submission

Variable name Value
Session 64b2ec0ad3944199bea214d02d028f17
Date 2021-03-08 14:14:19.820292
Level 2
Code player1 is rock, paper, scissor \n print Player1...
Server error -
Client error -
Version Mar 04 (74f3a0)
Submission id 6046313c121bf907dd9926fd
Lang en
Email -
Username None
Is test -
Demo False
Start False

Table 5: Example of a submission logging through the Hedy web environment

13



4.1 The dataset

The Hedy dataset consists of 1, 209, 123 code submissions by 339, 376 unique sessions from
level 1 through level 13. As stated earlier, higher Hedy levels are out-of-scope in this research.
It should be noted that this is not the same as the unique amount of users. A new session
is created each time a user enters the website. When a user uses the Hedy web environment
on multiple devices or returns after the session has expired these are all counted as unique
sessions. The username value has been implemented recently and creating an account is not
mandatory. Through this structure the exact amount of unique users is unknown. The structure
of the dataset is changed multiple times, where for example the server error value is either
a None, - or the actual error message. The error messages are returned to the user in the
supported language of choice in which the error messages are stored in the dataset as well.
Due to not containing any general labelling complicating the process of filtering and counting
specific error messages. The error messages are stored in one of the (at the moment of
writing) 9 supported languages. The client error values suffer from the same complications as
the server error values. Client errors are out-of-scope of this research due to them not being
directly related to the programming itself. They can occur due to a mistake when parsing,
Hedy code is parsed to incorrect Python code, or any other unexpected error on the client-side
of the application. For completeness, they are shortly mentioned in the following subsection.

Figure 2: Hedy programs count per level
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In Figure 2 an overview is visualized of the total amount of code submissions per level. One
would expect for level 1 to have the largest amount of programs as this is the starting point
of Hedy. While this expected diminishing pattern is the case for most consecutive levels, two
outliers can be found. Level 2 as well as Level 7 have an unexpected high amount of code
submissions. The amount of submissions for level 2 can be explained by the introduction of
the random keyword in this level. Enabling users to get different results with the same code
and inviting them to submit the same code multiple times. The large amount of programs for
level 7 can be explained due to being the last deployed level for a long time. Expecting that
users who were interested in the most functionality possible at that point would execute their
code on level 7.

An overview of the deployment time between levels can be found in Table 6. One can no-
tice that the first 7 levels of Hedy where deployed relatively fast after each other, while the
time between these and Level 8 as well as the time between level 8 and 9 is significant. Af-
terwards, the following levels where deployment quickly after each other as well. The levels
developed and deployed after level 13 are out-of-scope of this research and therefore not in-
cluded in this table. It should be noted that the deployment dates are based on the dataset and
might not be entirely accurate. For example, when a level is tested in development and logged
while not being deployed, in this case the first logged date is counted as the deployment date.
This might be the case, for example, for level 3 for which a logging is found earlier than for
either level 1 or 2.

Level(s) First log date Hedy Version Days since last level
1, 2 19-03-2020 739f13 -
3 18-03-2020 ef7451 -
4 19-03-2020 e2913d 1 day
5 23-03-2020 2d4993 4 days
6 31-03-2020 82ebb2 8 days
7 05-04-2020 76d4af 5 days
8 13-10-2020 ae1b38 191 days
9 01-04-2021 da179e 170 days
10 06-04-2021 50aafc 5 days

11, 12, 13 16-04-2021 e06fe9 10 days

Table 6: Deployment overview of first 13 Hedy levels
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4.2 Concept usage

In this subsection, we look at the Hedy concept usage over the different levels. The Hedy
programming language introduces new concepts and coding structures throughout the levels.
The normalized concepts used per level can be found in Figure 3. The percentages in this figure
show the percentage of programs that contain these concepts. For example, it is clear that the
echo keyword is only allowed in level 1 as it is not used further on. Similarly, one can see that
from level 2 and onward, the print keyword is used in nearly all programs. No filter is applied
for keyword usage within strings. For example, when a string is printed containing a keyword,
this is still counted a use of concept. This can explain the case that some keywords are used
in levels where this is not possible. As for example, the for keyword in level 1. We argue that
this does not influence the results significantly and therefore the filtering is out-of-scope.

Figure 3: Normalized use of concepts over the first 13 Hedy levels

4.3 Language distribution

In this subsection, we look at the language distribution over the different levels. A figure similar
to Figure 2 is created. However, a differentiation is made on the different possible languages.
Currently, Hedy supports 10 different languages, for which the abbreviation can be found in the
legend of the figure. The overview of the language distribution can be found in Figure 4. More
languages have been added throughout the development of Hedy. Therefore, the visualization
might not be representative for the current language distribution of use. In contrast to Figure
2 the data is filtered on unique sessions because we are interested in the user distribution and
not the program distribution over the languages. However, it is clear that the languages Dutch
and English are the most used languages. Due to the lack of usage of some languages, the
Figure can be difficult to read. Therefore, an addition table is added given the exact values
and percentages for each language, this information can be found in Table 7.

16



Figure 4: Language session distribution over the first 13 levels of Hedy

Language Abbreviation Programs created Percentage
English en 967822 80.04%
Dutch nl 145791 12.06%
- - 79440 6.57%
Spanish es 11057 0.91%
French fr 2317 0.19%
Portuguese pt br 1105 0.09%
German de 807 0.07%
Chinese zh 288 0.02%
Italian it 187 0.02%
Hungarian hu 0 -
Greek el 0 -

Table 7: Hedy programs created per language
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4.4 Program length and distribution

In this subsection, we analyse different length distributions throughout the levels. We take a
closer look at three different types of distributions, namely the character count, word count
and line count distribution. Each one is visualised using a box plot using SeaBorn and all three
plots can be found in Figures 5, 6 and 7. Outliers are filtered for readability of the visualisation.
Calculating the character count is done by using the Python built-in len() function of each
submitted code, this means that the shown length includes white spaces as well. The word
count is calculated by counting the numbers of white spaces in each submitted program +1.
Similar, the line count is calculating by counting the amount of newline-characters (\n) +1.
A general overview over all programs can be found in Table 8. Notice that this also included
invalid programs, because a Hedy with one character or one word is not possible. For all three
distribution a high standard deviation is found, combined with the high Max value for each
distribution shows that larger programs are created then expected.

While we expect a positive linear correlation between the levels and the three different dis-
tributions due to the increasing syntax and programming functionality, it was expected that
users would create larger and more complex programming along with the level. However, this
correlation is not found. A Pearson correlation is calculated using the built-in corr() function of
the Pandas library. A correlation of respectively 0.03, 0.02 and 0.01 is found between the Hedy
level and the different length calculations, which can be classified as no correlation at all. The
expected behaviour of programmers creating longer and more complex programs on higher
levels is not supported by our analysis. We assume that this is due to the lack of programs
created on the higher levels, whereas most in-class Hedy teaching focuses on levels 1 till 7.
Using these levels as well to create larger programs.

Distribution Min Max Mean Standard Deviation
Character count 1 682,609 138.05 1286.51
Word count 1 680,679 28.08 799.13
Line count 1 16,080 5.49 59.79

Table 8: Hedy programs character, word and line count distribution

Figure 5: Overall character count distribution per Hedy level
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Figure 6: Overall word count distribution per Hedy level

Figure 7: Overall line count distribution per Hedy level
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4.5 Error analysis

In this subsection, we perform an error analysis on the Hedy dataset. First, we look at the
general statistics on errors made, followed by a few examples of the most common errors.
Then we look at the error distribution over the first 13 level of Hedy, and finally we give an
overview of the error rates per language. By filtering on the “None” and “-” server errors, we
keep a total of 293, 977 logs containing an error. Meaning that 24.313% of all the programs
(1, 209, 123) results in a server error. Similarly, we filter for the client errors: A total of 73, 322
client errors have occurred, representing 6.064% of the programs. We only look at the server
errors because they are most likely caused by a programming error, while client errors can
have very diverse causes. This happens when the parsing of Hedy code into Python code is
successful and is returned to the users, but for some reason an error occurs on the client-
side. This can either be a mistake in the parser (and not of the user) or another unknown
connection mistake. We find a total of 37, 738 unique errors, for which we filter out the errors
that only occurred once. Leaving a total of 10, 269 unique errors. Filtering is done because
we are interested in frequent error patterns and not unique mistakes. The scale of the dataset
makes it impossible to manually analyse and classify unique errors. Notice that due to the
language-dependent error messages the actual number of unique errors is lower, however we
are unable to compare these. An overview of some of the most frequent occurring errors is
found in Table 9. By manually filtering all translations, the Hedy errors are retrieved, and the
errors are counted, an overview for which can be found in Table 10.

Error Frequency
String without quotation marks 11,329
Code at wrong level (level 2 at level 1) 7286
print is not a Hedy level 3 command. Did you mean print? 3497
Code at wrong level (level 7 at level 6) 3231
no code found, please send code. 2335

Table 9: Frequent errors found within Hedy code programs

Error name Amount Percentage
Parsing error 124,685 40.64%
Invalid command 83,542 27.23%
Python error 70,474 22.97%
Wrong level 12,793 4.17%
Unquoted text 12,299 4.01%
No code 1,906 0.62%
Incomplete code 718 0.23%
Unknown error 370 0.12%
Invalid space 2 0.00%
Undefined variable 0 -

Table 10: Overview of the error distribution on server errors in Hedy

One interesting frequent error is the print error occurring in level 3. With a total of 3497
occurrences, this makes up more than 1, 2% of all errors. Looking into this mistake, the error
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is easy to explain: From level 3 and on quotation marks should be used when printing text,
in contrast with levels 1 and 2 where text could be printed without any defining symbols.
However, the ask keyword is still used without any quotation marks. As well as a variable;
which is also printed without quotation marks.

When looking at the error percentage per level, all percentages are between the 15% and
60%. With a clear high outlier for level 11. One possible explanation for this high percentage
could be due to an implementation bug at the moment of deployment through which correct
code was faulty parsed and returned an error. One explanation for the low percentage of level
2 can be found in the introduction of the random keyword. When users have a correct code
execution, they are probably interested in executing it multiple times for different results. This
way the level error percentage will drop. An overview of the error percentage per level can be
found in Figure 8. An overview of the error percentage per language can be found in Table
11. We argue that the difference in error percentage between English and Dutch is due to the
amount of novice programmers using Dutch did so in a classroom environment, having for
support for helping and solving errors. We are unable to find a cause for the (very) low error
percentages of the less popular languages. The supported Hedy languages without programs
in the dataset are left out of the table because this wouldn’t add any information.

Figure 8: Overall error percentage per level

Language Abbreviation Code submissions Server errors Error percentage
English en 967822 265324 27.41%
Dutch nl 145791 25511 17.50%
- - 79440 1408 1.77%
Spanish es 11057 1133 10.25%
French fr 2317 137 5.91%
Portuguese pt br 1105 123 11.13%
German de 807 79 9.79%
Chinese zh 288 13 4.51%
Italian it 187 - 0.00%

Table 11: Error submission and percentage per language
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4.6 Drop-out rate

In this subsection, we look at the drop-out rate of the users. We state that a programmer is
counted as a drop-out when the last submission is one that results in an error, and no further
attempts are made within the current or any other level within the same session. Simpler
stated: When the last submission of a session results in an error, we count this as a drop-out.
We assume that a higher drop-out rate suggest a lower usefulness of compiler feedback: giving
the user not enough information to solve the problem and making them rage-quit their faulty
program at hand. This rate will be seen as an important indicator of error message usefulness
throughout this research.

A few side notes should be made on the drop-out analysis. Because the Hedy language it-
self is still in development, it might be the case that a faulty submission of code is done
in the highest level available at that point. Suggesting that there is nothing wrong with the
learning process, and they just stopped in the end with a faulty program. We leave this aspect
out-of-scope because we state that it is difficult to filter this data and that it will have no
significant influence on the statistics. It is still a drop-out, just a different kind. We could say
a non-learner drop-out. Another important side-note is mistakes on the development side, be-
cause the language is still in development it is possible that in some versions correct Hedy code
has been compiled incorrectly, resulting in an error. Something that would explain a drop-out
because the code can’t be fixed. We have only found this to be the case with a very small
numbers of programs in higher levels, therefore we’ll leave this out of scope as well.

We look at the drop-out percentage per level. The percentage is given as the percentage
of the last submission of a session resulting in an error. A figure showing the drop-out rate per
level can be seen in Figure 9. We see an almost linear increase of drop-out together with the
higher levels. We argue that this can be explained by two factors: First, for most in-classroom
Hedy sessions only the first levels are used, giving the novice programmers more help and mak-
ing them less likely to quit. Secondly, the syntax gets more complex with the levels, making it
harder to create successful programs on higher levels. We assume that this added complexity
is an indicator for the higher drop-out rates at higher levels.

Figure 9: Drop-Out percentage per level
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4.7 Identical submission analysis

In this section, an analysis on the identical (faulty) code submissions is performed. We state
that the submission of identical code that results in an error is evidence of a misunderstanding
of the error message. Making that, the novice programmer is unable to identify the mistake
and solve the error by themselves. While we expect them to understand the concept of the
computer simply following instructions, still another identical attempt is made. Even when it
should be clear that the computer will respond identical and the attempt will result in another
error.

We filter the data on containing server errors and group them on session, level and code.
Meaning that all sessions submitting the identical code in the same level of Hedy will be in
the same group. Then an analysis is done of the size of each of these groups: directly corre-
sponding with the amount of times the identical code is submitted. For example, if a group
has size 5 we know that that specific session on that specific level submitted that specific
(faulty) code 5 times. The distribution of these group sizes can be found in Figure 10. It
should be noted that no in-depth analysis is done on why the code is run several times. This
might also be due to a bug in Hedy which returned an error on correct code. We argue that
this part would not make an important difference in the results and is therefore out of scope.
The most occurring amount of identical submissions is 2, occurring 20.528 times. The most
times of re-submitting identical code is 526 times. As seen in the figure the distribution has
an expected pattern of decreasing frequency over the amount of submissions. No surprising
outliers are found, however the amount of 526 is larger than expected.

Figure 10: Overview of duplicate submission of identical (faulty) code
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4.8 Time to Change

In this subsection, we analyse the time between two consecutive faulty submissions, so to
get more insight if the programmers actually read the error message given. We differentiate
between three time windows: A re-submission within 3 seconds is classified as not reading
the error message, within 10 seconds is scanning the error message and between 10 and 30
seconds is actually reading and trying to understand the message. If the time-span is any
longer, we think that the programmer takes a break, asks for help or in any other way does
not directly continue with programming. Notice that in all cases there is some misconception
in the perspective of the student, because wrong code is submitted again. However, through
these different time-spans we can differentiate between expected scenarios such as just press-
ing run again or reading but not understanding the message. The time between submissions is
visualized using a bar plot with bins of 1 second. Which can be found in Figure 11 and Figure
12. The visualisation seem to approach an expected distribution, except for the large amount
of re-submission within 1 second. We argue that this is due to submitting the same faulty code
and indeed, by filtering on identical code submissions, we find the distribution as in Figure
12. The found values and percentage for the three different time windows determined can be
found in Table 12.

We find an unexpected large amount of consecutive mistakes being made after 30 seconds.
Meaning that an error occurred, the novice programmer did some alterations and still another
error occurred. This while taking quite some time to making the alterations. It is unclear why
this percentage is high, and further research should be conducted in this long-time mistake
making. For now, we are mostly interested in the 17.04% for which we deduct that they didn’t
read the message and made yet another faulty code submission.

Time till next submission Consecutive mistakes Percentage
Within 3 seconds 31,360 17.04%
Between 3 and 10 seconds 19,422 10.55%
Between 10 and 30 seconds 51,711 28.09%
Above 30 seconds 81,596 44.32%

Table 12: Consecutive faulty submissions per time window
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Figure 11: Overview of time between consecutive faulty code submissions

Figure 12: Overview of time between unique consecutive faulty code submissions
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4.9 Steps to Success

In this subsection, we analyse the distribution of attempts needed to get a working program.
We determine the steps for success as the amount of faulty code submissions by the same
session before running a correct program. This statistic gives us insights in the usefulness of the
error messages. Because we can argue that with good error messages, the novice programmer is
able to determine the mistake and fix it within one attempt. A visual overview of the attempts
needed for a success program can be found in Figure 13. The exact value of the first 5 attempts
and the rest can be found in Table 13. The most attempts needed for a correct program were
516 attempts. It is interesting to see that while the overall error percentage is 24.313% still
93.66% of the first attempt, programs is correct. Suggesting that a user who made an error
is far more likely to make another error than a new user. Giving us the insights that when
making consecutive mistakes, it is harder to solve the problem at hand.

Figure 13: Overview of attempts needed for correct program

Attempts Working programs Percentage
1 741379 93.66%
2 24928 3.15%
3 9656 1.22%
4 4962 0.63%
5 2796 0.35%
More than 5 7870 0.99%

Table 13: Attempts needed to get a working program
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5 Enhancing the Error Message

In this section we propose a solution to the found difficulties of novice programmers to learn to
code due to the misunderstanding of the error message: The Gradual Feedback Model (GFM).
A model that, similar to Hedy, works by introducing more explanatory errors dependent on
the behaviour of the user. First, an introduction is given on the added value of this model.
Then a literature review is conducted on similar work in the field of Enhanced Compiler Error
Messages (ECEM). Follow by an explanation of how the model works and an explanation of
the implementation within the Hedy web environment. It should be noted in this research the
aim of the model implementation is on Hedy. While the model itself is language-independent
it can be implemented in any programming language.

Imagine being a novice programmer, just starting your first programming course in Python.
First exercise: output the sentence “hello world!”. You can imagine forgetting the quotation
marks in the print command. Trying to execute the (faulty) code: print(hello world). This is
wrong, but what error message will you receive? The following error will be returned: Syntax-
Error: invalid syntax. This makes sense, because a fault is made in the syntax. But what if we
make a slightly different mistake? When trying to output the string “hello” also forgetting the
quotation marks: print(hello) you will receive an NameError: name ’hello’ is not defined. For an
experienced programmer, we can spot the difference: the first is indeed an invalid syntax, while
for the second example, Python expects a variable named hello. But: the novice programmer
has no idea! In their mind, the mistake is identical, missing the parenthesis for printing a string.
However, due to the large library of keywords, built-in functions and possibilities of modern
programming languages improving this feedback to the user is difficult. Luckily, Hedy is a more
simplistic language: enabling us to efficiently improve the error messages.

An earlier study on enhancing error messages to improve the debugging skills of novice pro-
grammers is done by Denny et al. Within an introductory programming class on Java, they
implemented a modified CodeWrite tool which gave either the original compiler feedback or an
enhanced version showing correct code as well as an explanation of the used functions or meth-
ods. According to the authors, “Although we anticipated that the enhanced error messages
would help students to identify and correct errors, analysis of the data shows no significant
(or practical) effect.” [7] While these results don’t sound very promising, they add a few side
notes to their results, such that most mistakes might be easy enough to identify without en-
hanced error messages and where the compiler message already gives enough information for
the student to solve the problem. Another side note is that they assume some students don’t
read the error messages at all.

While these results seem to suggest that enhanced error messages don’t give the expected
results, we assume that in the case of Hedy an improvement can still be made. First the
interpreter feedback of Hedy is still in development and can be improvement informatively
whereas the Java compiler has been in development for years. The note on not reading the
message at all can be enforced by disabling the run button within the Hedy environment for
a fixed amount of time. For which can be experimented with a time value that should be
chosen carefully. On one side the reading should be enforced, where on the other side novice
programmers shouldn’t have the feeling that they have to wait on the interpreter while already
understanding their mistakes.
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5.1 Literature review

In this section, a literature review is done on related work in the field of improving error mes-
sages in programming languages. While some research might not be related to the structure
of Python or Hedy, their mindset and solution to problems within different languages give a
good overview of the work done in the field. The section is structured per-paper, for which
each paper a short overview of the work is given. Finally, a short conclusion is given, as well
as some perspective on the work that can still be done.

It is well-documented that novice programmers often struggle in understanding compiler er-
ror messages (CEMs) caused by incorrect syntax. [21] Three abbreviations often used in this
research field of compiler messages are stated below. For simplicity and consistency, these
abbreviations will be used in this research as well.

CEM = Compiler Error Messages
HCI = Human Computer Interaction
ECEM = Enhanced Compiler Error Messages

James Prather et al. analysed five different public experiments in the field of enhancing com-
piler messages, for which inconsistent conclusions were drawn. Interesting in this research is
that it is performed from the perspective of novice programmers as well. They proposed five
potential reasons for this inconsistency in research results. Which can be found in Table 14.
Using a mixed-methods experiment in C++ they aim to address these reasons with an auto-
mated assessment tool, Athene. Their research did not show a substantial increase in student
learning, but qualitative results indicate that students do indeed read the enhanced compiler
error messages. [21]

Number Reason
1 students do not read them
2 researchers are measuring the wrong thing
3 the effects are hard to measure
4 the messages are not properly designed
5 the messages are properly designed, but students do not understand

them in context due to increased cognitive load

Table 14: Potential reasons for inconsistent conclusions on ECEM [21]

In 2012 Watson proposed using crowd-feedback to give users the feedback on their own level.
Using the first found work of gradual feedback. First, the normal error message is given. When
making the same mistake again, a more enhanced error messages is given. And finally, on the
third mistake, a fix is proposed. They propose an online tool called BlueFix, which can be
implemented within the BlueJ IDE: A well known IDE for novice Java programmers. They are
the first research found that implements a framework with dynamic levels of support based
on the compilation behaviour of the programmer. The flowchart of the interaction with their
proposed tool can be found in Figure 14. The students perceived the tool as useful and an
improvement in precision of 19.52% was found over other similar earlier research introducing
the recommender system HelpMeOut. [8][26]
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Figure 14: Flow chart of the BlueFix process, as proposed by [26].

Guillame Marcaeu et al. researched evaluation of error messages. Work that is useful for mea-
suring the effectiveness of the usefulness of a specific error message. A code rubric is created
with which they recommend changes to error messages: simplify vocabulary, be more explicit in
pointing to the problem, help students match terms in the error message to parts of their code
(e.g. using colour coded highlighting), design the programming course with error messages
in mind (rather than an afterthought), and teach students how to read and understand error
messages during class time. [18]

In the work by Traver et al. a more general comparison is made on messages gives by dif-
ferent compilers on the same language. While this does not apply for languages such as
Python and Hedy due to having only one interpreter. It is interesting to read the approach on
what compiler messages actually say and mean, combined with the question: Why are these
messages so cryptic and a burden for programmers? They propose a set of eight principles
that each compiler designer should keep in mind to make the messages useful, readable and
understandable by the user. [25]

Raymon Pettit et al. performed research in the field on enhanced error messages as well.
They implemented an enhanced compiler message for an C++ introductory course. They
found no decrease in errors or any other difference in statistics with or without the enhanced
messages. However, it should be noted that the enhanced messages were only given when code
was submitted to the server to check the results. When compiling the code locally, the normal
error messages were received by the user. Making it hard to drawn conclusive results on the
usefulness of the enhanced messages because we can expect user to debug their code locally.
[20]

Guillaume Marceau et al. use the DrRacket programming environment and by an in-depth
analysis introduce a language independent rubric to evaluate student responses to error mes-
sages. They define the effectiveness of an error message by the following sentence: Does the
student make a reasonable edit, as judged by an experienced instructor, in response to the error
message? They start from a conceptual model where they formulate how an error message
should help students. This in the sequence: Read → Understand → Formulate. They finalize
a rubric which categories five ways of handling with an error, in each way how a step can be
classified. [18]

29



Another interesting approach is matching error messages to stack overflow answers. Emil-
lie Thiselton et al. take a look at this approach by implementing Stack Overflow answers as
feedback for Python error messages. They implement a plugin for the Sublime IDE called
Pycee. Two variants of the plugin are evaluated using a think-aloud study. Of course, this is
an interesting approach due to the large availability of questions on Python. However, in the
case of Hedy this is difficult due to two major parts: The significant smaller syntax scope and
the small scale of use. [24]

Heemskerk researched the difference in the expected error information by novice program-
mers and the actual error messages provided by Python. He introduces the Error Message
Component Framework (EMCF) to determine the structure of an error message. A total of 11
participants were asked to perform several Python tasks. He found that several error messages
contained jargon or other terms that were unclear for the research participants. For example,
the EOL (End-of-Line) error was only understood by one of the participants. One suggestion
he makes to solve this issue is by creating a custom compiler / interpreter aimed at novice
programmers. [9]

5.1.1 Conclusion

Some research has been conducted in the field of Enhanced Compiler Error Messages (ECEM).
Varying from parsing messages to more human-readable text, suggesting fixed code examples
and including Stack Overflow answers into the error messages. While all approaching shed an
interesting light on the field of improving compiler feedback, rarely the user itself is the central
point of interest. Almost all research (except [26]) look at the user as a general entity, making
no differentiation between how programmers learn. While this might not be that big of an
issue while trying to improve the feedback for experienced programmers, it is for novice ones.
This shows that there is still a lot to research in the field of Adaptive Feedback, customized to
the user. One possible implementation is suggested in the next section, the Gradual Feedback
Model (GFM).
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5.2 The Gradual Feedback Model (GFM)

Within a normal programming language, the goal of the interpreter or compiler is to point the
programmer towards the mistake and explain why it was unable to execute the written code.
While this is useful for an experienced programmer, compiler messages tend to be overwhelm-
ing and difficult to interpret by novice programmers. We now know that simply being pointed
at a mistake is not a useful way of learning and understanding new things. With an added
difficulty that it can be the case that the code is not programmed wrongly at the point of error,
but a mistake at another point is made. Different research has been conducted on improving
the compiler feedback, being more useful and explanatory towards novice programmers. How-
ever, this doesn’t help with the difficulty for novice programmers: Pointing to mistakes doesn’t
help with the learning aspect of a (programming) language.

In this section, we propose a new way of giving error messages to novice programmers. Instead
of just giving an error message, several feedback levels are proposed. Together with design
changes to enforce error message reading and preventing duplicate faulty code submissions. It
should be kept in mind that the aim of this model is the improvements of learning to program.
The usefulness of the model is argued to be less and less the more experienced a programmer
becomes. In this way it matches with the language of Hedy: Give gradually more syntax and
options to prevent a high cognitive load and improve the learning aspect of programming.

5.2.1 Overview

The goal is to provide users with a Feedback Model that provides users with an error message
corresponding to their level of help necessary, ensuring that the aspect of learning from mistakes
is the primary goal of the given error messages. The model contains several levels of feedback,
each giving another level of explanation on the mistake made. Connected to each level of
feedback is a question of usefulness, asked after a successful code submission. An overview
of the model can be found in Table 15. The feedback is given as an addition to the already
existing error message. Because the goal is learning to program and read and understand
errors. We still want the user to become familiar with the original messages without getting
too dependent on the ECEMs of the model. The feedback is given in a collapsed window,
giving the user a choice to interact with the model or only use the already shown original error
message. A graphical representation of the model using a flowchart can be found in Figure 15.

Level Feedback
1 Give original error
2 Give enhanced error message
3 Proposed similar correct code from dataset
4 Repeat the new concepts of current level
5 Suggest taking a break, come back with fresh view

Table 15: Gradual Feedback Model (GFM) levels of feedback
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The feedback level starts at 0 will be raised by one after each error made. After a successful
code run, the level is reset to 0. This results in the user being stuck at feedback level 5 until
a successful code execution is made. This design choice is made to prevent users from using
the GFM as a debugging strategy. An example of the gradual feedback for Hedy level 4 can be
found in Table 16. Notice that the feedback itself is programming language-dependent, and
the current example is based on Hedy. In the case of a non-gradual language, the feedback of
level 4 will have to be altered due to the lack of levels and new commands at different points
of learning. One could delete the feedback level all together, or implement a keyword-recap
based on the user behaviour. However, this is out-of-scope of this research.

Feedback level Example message
1 prnt is not a Hedy level 4 command. Did you mean print?
2 You used a command that doesn’t exist. Take a closer look if you

haven’t made a mistake by accident or used a non-alphabetical
letter at a weird spot.

3 print ’hello world!’
4 Remember, the ”if” and ”else” commands are new in level 4.
5 You seem to be stuck at this level, take a little break and try it

again later.

Table 16: GFM feedback messages in Hedy level 4

When the user attempts to submit consecutive identical faulty code, an Identical Code error is
returned and the feedback level is not raised. In this case, a short explanation is given on why
the code will still return an error, identical to the previous attempt. An additional measure is
proposed where the run button is greyed-out for a limited amount of time to enforce error-
reading. A visual overview of the process flow of the GFM can be found in Figure 15. Notice
that the enforced error-reading time is not defined and implementation dependent. An in-depth
explanation on the Hedy implementation is given in Section 6.

Figure 15: Language-independent GFM flow chart
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5.2.2 Getting the feedback

In the case of a successful execution, directly after a feedback level higher than level 1 we
will ask the user feedback questions dependent on their interaction with the model. This to
enable us to evaluate the usefulness of the model. One general question is asked as well as a
feedback level dependent question for each of the feedback levels the user has had interaction.
Interaction is measured as expanding the feedback window (enabling the user to read the
message). Through this feedback, we are able to evaluate the model. All questions are yes/no
questions to lower the effort of the programmers to answer the question. We assume this will
increase the participation willingness to answer the questions. An overview of the questions
connected to each level can be found in Table 17.

Feedback level Question
1 -
2 Did the extended explanation help you to solve the error?
3 Did the similar code help you to solve the error?
4 Did the recap on the new elements help you to solve the error?
5 Did the break suggestion help you to solve the error?

Table 17: GFM feedback level dependent questions

5.2.3 Design choices

In this subsection, the design choices of the model are discussed. By combining the knowledge
gathered through the literature review, the errors found through the data analysis and our
own ideas, the current model was developed. Firstly, the feedback given at feedback level 1,
the goal is to guide the novice programmers towards Python. By giving the normal generated
error first, they learn to recognize and work with short and sometimes cryptic errors. It might
not be successful at first, but that skill will be learned by programming more often.

The feedback at level 2 will give more information on the error, but doesn’t give too much away
on how to exactly solve this error. It can be seen as a more human approach to the original
error. Which is important, because a large aspect of programming is the skill of a programmer
to divide a problem into smaller problems and solve these systematically. We want the novice
programmer to better understand the mistake, without undermining the learning process of
these two important aspects.

For level 3, we don’t want novice programmers from becoming too dependent on similar
correct code. When their programs become larger and the structure more complex, this is not
a reliable way of debugging. By proposing the code only in level 3 and not earlier on, we assume
that the novice programmers will see this as a last resort and not as a method of solving their
programming problems. While it might be attractive to implement this feature as of level 1, we
want to prevent this dependency. We explain this choice more in-depth in the following section.

Due to the structure of Hedy new concepts are introduced at each level, an aspect that
increases the cognitive load. In level 4 of the model, we return to the programmer a reminder
of the new concepts introduced in the current level. This reminder should help the program-
mer realise the difference between this level and the previous ones, enabling them to notice

33



mistakes faster.

Level 5 returns the advice to approach the problem differently and/or take a little break.
While this doesn’t bring them closer to the coding problem or give them a more useful error
message, we still argue that this is important advice to return. It also prevents students from
getting stuck into a repetitive pattern of failing to get a working program. It should be noted
that the programmer still receives the original error message. So while this does not introduce
new aspects or useful information, they are still able to use the original error message to solve
the error at hand. The feedback level won’t reset after make a mistake in this level of feedback
to prevent using the GFM as a debugging strategy. The only way to reset the model is by
either starting a new session or switching levels.

5.2.4 Feedback as a debugging strategy

In this subsection, the expected interaction of the programmers with the GFM are discussed.
The model implementation is not transparent, it is unclear for programmers as to what moment
they can expect what type of feedback. For the more observant ones, they might notice a
pattern over time in which there is a structured order. This way they might be triggered to
make mistakes on purpose and get their desired level of the model. One thing noticed by
other, similar, research in the field of ECEM is that the messages are used as the debugging
strategy itself. Making mistakes on purpose without a serious attempt at solving the problem
to receive more information on the mistake then with the normal error message and use
this to solve the problem. This is undesired behaviour: we want to provide the programmers
with additional information to enable them to solve the problem themselves. Using this as a
debugging strategy should be avoided. Due to the structure of the GFM implementation, this
is difficult because the feedback level only resets at a successful code execution. We assume
that this implementation choice will help the programmers in the long-term by not becoming
dependent on the ECEMs provided by an additional model, something that isn’t always there
when they are programming. Resetting the feedback level by switching level, browser or in any
other way enforce a new session is not expected behaviour and out-of-scope of this research.
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6 Implementation

In this section, the implementation of the Gradual Feedback Model (GFM) implementation
within the Hedy web environment is discussed. First, the current error handling is explained,
followed by changes made to the Hedy web environment for the GFM implementation. Then
we look at the implementation of finding similar correct code, the feedback that is given at
feedback level 3. Followed by the front-end and logging implementation. Finally, we discuss
the limitations & challenges of the implementation in Hedy. The GFM Hedy implementation
is implemented in both English and Dutch and the forked-project of the Hedy source is open-
source available on GitHub. [3]

6.1 Overview

Hedy is built upon Python and runs on Flask web server. The Flask architecture enables us
to keep track of session variables, similar to how sessions work within PHP, these values can
be accessed and altered throughout the whole website. This feature is the key part of the
implementation of the GFM within the Hedy environment. Enabling us to keep track of the
feedback level and several other values such as previous code. A value which is essential for
preventing duplicate faulty code submission. At retrieving the home page, the feedback level
value is set to 0 and increased at each consecutive error. The html-templates are altered to
enable the addition of a feedback box containing the GFM messages, as well as enabling us
to present the user with feedback questions on the model performance. An additional logging
function is written to store the user interaction with the model.

6.2 Error handling

In this subsection, we discuss the error handling of Hedy. First, we discuss the current way Hedy
handles errors with transpiling and executing code. Looking closer at the possible exceptions
and how they are handled. Then we look at how the GFM is implemented within the Hedy
environment. Expanding the error handling to keep track of additional values and return altered
messages dependent on the HCI.

6.2.1 Current Hedy error handling

The largest part of the Hedy parsing and error handling works with a try-except statement.
A try is used to transpile the code and successfully run it, then the result is added to the
response which in turn is a JSON package that is returned to the webpage-template. In the case
the transpiling fails, two possible exceptions can occur: either a HedyException or a general
Exception. In the case of a HedyException, the error code is sent to a template to receive the
corresponding error message. Hedy currently differentiates between 7 types of Hedy errors. An
overview of the different errors and a short explanation can be found in Table 18. In the case
of an Invalid Space error, the mistake is automatically fixed, and a warning is returned instead
of an error. In all other cases, the error message from the error template is retrieved and sent
to the user. The error templates are language-dependent, enabling the error messages to be
the language of choice of the user. When a general Exception occurs, an unexpected event has
happened because either the parser is unable to create either correct Python code or recognize
a mistake within the Hedy code and return a HedyException. In this case, the Python error
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itself is return to the user. An overview structure of the current Hedy error handling can be
found in Figure 16.

Error name Short explanation
Wrong Level Correct Hedy code, executed at wrong level
Incomplete Code incomplete, something is missing
Invalid Invalid command is used
Invalid Space Space where this is not allowed
Parse Invalid code, unable to parse
Unquoted Text Forgot quotations when printing text
VarUndefined Trying to print an undefined variable

Table 18: Different Hedy Error types

Figure 16: Current Hedy error handling implementation

6.2.2 GFM implementation Hedy error handling

For our GFM implementation, the except statement is altered. Whereas the error is still added
to the response, several additional checks are performed. First, before execution, there is a
check for identical faulty code, which will return an identical code warning and prevent the
increase of the feedback level. Then there is a check for the current feedback level and the
response corresponding to the level explained in Table 15 is added to the response. The action
generated on that level is given as additional response. In the case of feedback level 2 the type
of HedyException is retrieved and an enhanced version of the error messages is generated from
the error messages template. A complete overview of these messages can be found in Appendix
A: GFM Hedy Messages. In the case of feedback level 3 a Levensthein distance calculation is
made on the code submitted by the user and a database of correct code, choosing the one
with the lowest distance. In the case of a general Exception, the model works the same except
for feedback level 2 of the model. Where an expanded Unknown error is returned from the
error messages template. An overview structure of the GFM implementation for Hedy error
handling can be found in Figure 17.
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Figure 17: GFM implementation Hedy error handling
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6.3 Finding similar (correct) code

In this subsection, we discuss the process of finding similar correct code. As explained in the
model explanation in section 5, we present the user with similar code at feedback level 3 to
enable a comparison and improvement strategy on their own (faulty) code. This similar code
is retrieved from the original dataset on which the data analysis has been performed as well.
First we focus on the process of pre-processing the dataset to be suitable for the similar code
finding, then we take a look at the code execution done on run-time to find similar code.

6.3.1 Pre-processing the data

For each level and language we create a unique similar code file. Because the model is im-
plemented in English and Dutch, we create two similar code files for each level. For example,
level3-en.csv. We first filter on all code submissions not containing any error, this because we
only want to present the end-user with correct code. Then we filter on all submissions made
in our current language of choice, for example English. Followed by the creation of a concept-
list for each level, containing all the keywords present in that Hedy level. Finally, a filter is
added to filter out swear words and non-language words (either English or Dutch). This to
filter undesirable language and personal information. For verifying if words exist in the current
language, we use the enchant library. We split the current code submission on white-space
and for each word iterate through a loop. If the current word is a keyword, we add it to the
processed-code string. If and only if the current word is not a banned word and not a personal
word, we add a % to our string. Otherwise, we break the current iteration and continue with
a new one. Because for similarity we are not interested in the actual words but in the keyword
usage structure, all non-keywords are replaced by %-symbols. Notice that any character can be
used as placeholder, this is just as a unique character to filter on the similar code finding. If we
successfully iterate through the code, the code and processed code are added to a list. After
iterating through the whole dataset (of the current level and language) an addition duplicate
check is done on the processed code, deleting all duplicate rows. An overview of the amount
of rows deleted and remaining due to these steps can be found in Table 19 and 20. The files
are only created for levels 1 till 10 due to a lack of data on the higher levels. The original
code and pre-processed code are stored together on a line in the .csv-file. An example Hedy
program can be found in Code Snippet 1 and the pre-processed in Code Snippet 2.

p r i n t H e l l o welcome to Hedy !
ask What i s y ou r f a v o r i t e c o l o r ?
echo So y our f a v o r i t e c o l o r i s

Code 1: Pre-processing code example

p r i n t % % % % ask % % % % % echo % % % % %

Code 2: Pre-processing code result
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Hedy level Offensive words non-English words Duplicate Programs Remaining Programs
1 1881 6113 10873 3731
2 2315 11442 26360 11792
3 955 5888 6213 3170
4 882 7077 1910 1852
5 947 5312 1819 1727
6 202 4792 1526 1437
7 618 28906 6126 4252
8 10 565 138 207
9 23 234 91 152
10 6 256 71 130

Table 19: General filtering statistics English files

Hedy level Offensive words non-Dutch words Duplicate Programs Remaining Programs
1 208 1725 2509 1006
2 64 772 2910 950
3 30 1172 1615 754
4 39 1469 281 401
5 23 1337 277 254
6 9 708 202 181
7 5 504 92 120
8 4 218 164 83
9 0 9 8 4
10 0 15 12 16

Table 20: General filtering statistics Dutch files
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6.3.2 Pre-processing the submitted code

For pre-processing the (faulty) code on run-time, a similar approach is used to the one to
pre-process the dataset. However, the swearing and non-language words filters are deleted
because they are not relevant when the user creates a program. It is fine if users create a
program containing personal information, made-up words or swear swords; we simply don’t
want to return programs containing them to users. The pre-processing step on the code itself
is identical, we retrieve the level-dependent keywords and replace all non-keyword words by a
% symbol. Then the Levensthein-distance is used to measure similarity against each row in the
corresponding level and language .csv-file. A threshold of 75 is set on the implementation, if
the costs of the algorithm are higher we return a No similar code found error. Similarly, for the
case of levels 11, 12 and 13 for which no similar code file is create we return a No similar code
found error. If the distance is 0 we directly return the current code because we are sure that
no better suggestion will be found. The Python implementation of the on run-time algorithm
can be found in Code Snippet 3. For finding the Levensthein-distance the python-Levensthein
library is used, written in C. Due to the structure of the Regex-function, we first replace each
non-keyword character in a word with a %-symbol and later on we replace a string of con-
secutive %-characters with only one %-character. This because the length of a non-keyword
word is irrelevant for finding similarity on keyword-structure level.

c o n c e p t s = g e t c o n c e p t s ( i n t ( l e v e l ) )
words = code . s p l i t ( )
code = ””
f o r word i n words :

i f word not i n c o n c e p t s :
code += r e . sub ( r ” [ a−z |A−Z |0 −9 | ! ? , ' '{} ] ” , ”%”, word )
code += ” ”

e l s e :
code += word + ” ”

code = code . s p l i t ( )
temp = ””
f o r p r o c e s s e d i n code :

i f ”%” i n p r o c e s s e d :
temp += ”% ”

e l s e :
temp += p r o c e s s e d + ” ”

r e t u r n temp

Code 3: Pre-processing code executed on run-time
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6.3.3 Limitations

In this subsection, we discuss the limitations of the similar code finding implementation. One
limitation of this similar code approach is the lack of performance on misspelled keywords.
In the case of a mistake with misspelled keywords, they are not recognized by the model as
keywords and therefore replaced by a % symbol. In this case, the proposed similar code can
differ greatly for the faulty code of the user and does not help to solve the error. An example
of a situation where the model does not have added value can be found below. We deemed
this out-of-scope for this research, but it might be an interesting future work to improve the
implementation of the similar code finding. The implementation could be improved by writing
an algorithm to guess the most likely keyword when a non-logical coding structure is detected.

Faulty example program:

prnt Hello welcome to Hedy!

Pre-processed result for similarity finding:

% % % % %

Suggested similar code by algorithm:

ask What is your name?

Another limitation is the non-weighted approach of finding similarity. In the current implemen-
tation, each non-identical letter between the user code and the possible similar code has a
cost of 1, as is usual with the Levensthein algorithm. However, we can argue that it is more
preferable to weight specific letters or keywords to make them more important in the similarity
process. For example, using the error message from the parser to detect the mistake and add
more weight to finding (correct) code that has high similarity with that specific part of the
program. It should be noted that a simplified way of adding weights to the algorithm is already
implemented through the pre-processing step of replacing non-keywords with the % symbol.
This possible improvement is out-of-scope and should be implemented and tested in future
work.

Lastly, a limitation is the linear implementation due to which a mistake with the identical
keyword usage structure, the same similar code is returned. This due to the use of .csv -files
for which the reading of the files always starts at the start of the file. One possible solution
to this problem is the implementation of a dictionary that keeps track of a collection of the
lowest distance programs and, after iterating choices, one at random. Another possibility is
reading the whole file into memory and start the algorithm at a random line. As all limitations,
we deem this out-of-scope of this research, and this is something as well that can be improved
by future work.
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6.4 The front-end

In this subsection, the front-end implementation within Hedy is discussed. As discussed earlier
in section 5.2 the response of the model is returned as an additional message. Resulting in a
double error message: the original one and the one generated by our Gradual Feedback Model.
To implement this visually, an additional box is implemented as an overlay on the code editor.
This added light-blue box is shown as additional information, right below the original error box.
The feedback box, as we will call it from now on, has an expand option: giving the user the
option to look at the additional information or not. We keep track of the user interaction with
the box on each feedback level. An example of the original error message implementation and
one with the additional feedback box can be seen in Figure 18. Notice that in this figure, the
feedback box is still minimized. An expanded example of the feedback box on the Hedy code
editor can be found in Figure 19. The title of the feedback box is feedback level-dependent, for
example when the similar correct code level is reached the title reads “Similar correct code”.

Figure 18: Comparison of the Hedy editor: left (original) and right (GFM implementation)

Figure 19: Hedy editor with GFM implementation (expanded)
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6.4.1 Enforce error reading

To enforce the error reading, we decide to disable the run-button for a limit amount of time
when an error is returned by the parser. As determined in the data analysis, we argue that
re-running code within 3 seconds is classified as “Not reading the error message”. Therefore,
if a faulty code submission is made through the GFM implementation, an additional value is
added to the JSON response storing the value for disabling the run-button. When the response
is sent to the JavaScript for processing, a check is done for this value. If it exists, the run-
button is disabled for 3 seconds and turned grey, while the shadow of the run-button is turned
black. Gradually over the time-period the button returns to the original green colour whereas
the shadow stays black until the last moment: then this is returned to the original dark-green
colour as well, indicating that the user can execute code again. No additional information on
disabling this button is given to the user, we argue that the visually changing of colours should
be sufficient.

6.4.2 Retrieving user feedback

To determine the usefulness of the model by users, data analysis can only help us to a certain
extent. Several assumptions will have to be made to state certain changes in behaviour as
indications for being useful. To gather direct feedback from the users, an additional pop-up
window is implemented with yes/no questions for the user. This pop-up will show if the GFM
implementation has been shown to the user (more than one consecutive mistake is made) and
the feedback box is expanded on one or more levels. When the feedback box has not been
expanded, we assume that the user did not seem to think that the additional information could
be useful. Indicating that they either saw the mistake themselves and fixed it, the interface was
unclear, and they didn’t notice the additional information, or they were stubborn and were sure
they didn’t need it. The questions will pop up after a successful code execution is performed,
in order of user interaction. First, a general question is asked: Did the additional information
help you solve the error?. Followed by level-dependent questions, which were explained earlier
in Table 17. A question is asked for each feedback level the user had interaction with (and
expanded the window). These answers are sent back to the server using an additional POST,
after which a logging to the dataset is made to store the answer(s). In a case that the feedback
box of a specific level is not expanded a logging is still made, the feedback related questions
are then answered with Null. While this gives us less information, by logging this information
we are still able to get more data on the problem-solving approach of the programmers. An
example of the feedback questions pop-up window can be found in Figure 20.
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Figure 20: GFM general question within the Hedy environment

6.4.3 Preventing identical faulty code

Another aspect of the model is the prevention of executing identical faulty code. This is
undesirable behaviour on the user side because they should be familiar with the concept that
the computer always responds the same and submitting identical code is an indicating of not
reading or not understanding the returned error. For the implementation, an additional value
is stored with the session-values of the user. The lastly executed code is stored temporary if
it resulted in an error. When a new program is submitted, an additional check is performed
to verify if the new code differs from the last submitted code. Only if the feedback level is
higher than 1, otherwise the previous submission didn’t result in an error. This is checked
before the actual parsing of the code. After the check, the code is still parsed to generate the
corresponding error message from the Hedy parser. The original error message is still returned
because we want this feature to be consistent with the GFM, returning the error message as
well as additional information. Parsing isn’t strictly necessary, because we code is identical
we already know the error message from the previous submission and this could be re-used.
However, this part of the implementation is deemed out-of-scope of this research. This could
(and should) be improved in future work to prevent unnecessary server load. Additional to the
error message, an Identical Code message is returned to the feedback box, explaining that
computers will always respond the same to the same instructions. The exact message can be
found in Appendix A: Table 29.
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6.5 Expanding the log

To enable an analysis of the interaction and usefulness of the GFM implementation, several
additional values will have to be logged. As one can verify by looking back at Table 4, Hedy
currently logs 14 values after each code submission. Due to the structure Hedy is implemented,
we are unable to merge the additional values in the already existing logger function. Currently,
a new log is made after the parsing, but before sending the response to the front-end of the
application. Because we want to store feedback and interaction of the user on the model, we
have to wait for their response on the front-end. Therefore, an addition log is made after the
front-end interaction, which can be merged onto the original log later on. The original logger
function is slightly altered as well to enable the easier filtering of submissions for which the
model is used.

Firstly, a Boolean value named GFM is added to the original logger function. This will be
set to True if the model is used and False if the model isn’t used. The later will be the case
when a non-supported language is used while the model is active. In the case of A/B testing
where the model isn’t present (the original website is returned to the user) this additional
value doesn’t exist. The feedback level is also added as a value to the original function. This
enables us to easier follow the error-solving path of the users. Similar to the GFM value, this
will be empty when the original website is returned to the user. When consecutive mistakes
are made, no additional logging performed. But, after the first successful execution within the
same session and level, the earlier discussed feedback questions are asked to the user. These
answers as well as information on interaction is logged using an additional function. All values
stored through this additional logging process can be found in Table 21. The storing of session
and date enables the manual merging later on for the data analysis.

Name Data type Example value
feedbackLevel Integer 3
generalUsefulness Boolean True
feedbackUsefulness Array of Booleans [True, null, False, null]
similarCode String print Hello World!
feedbackCollapse Array of Booleans [True, False, True, null]
GFM Boolean True

Table 21: Additional GFM values stored through the additional logger function

GeneralUsefulness contains the user answer to the general usefulness question. feedbackUse-
fulness and feedbackCollapse both contain an Array storing the interaction with the user.
The values in the array represent each level of feedback where the model produces additional
information for the end-user, so level 2 till 5. feedbackCollapse stores if a user had interaction
with the additional information. It is set to True if the user did expand the feedback box, False
if the user didn’t. If a successful code run is made before a level of feedback is shown, the
value is set to Null. For the feedbackUsefulness variable, the user is asked a level-dependent
question of each level of feedback with which the user had interaction. The answer is stored
as either True or False. If the user didn’t expand the feedback box of a specific level or the
level was never reached, then Null is stored as well. If the user closes the question window
without answering, an “-” is stored instead.
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6.6 Limitations & Challenges

In this subsection, we discuss the limitations and challenges on the GFM implementation within
the Hedy environment. One of the challenges was the lack of comments within the Hedy code.
Making it difficult to understand and keep track of different aspects of the language. Getting
to know the environment and understand how the dependencies worked were a large part of
the implementation process. Due to the language and web environment still being in develop-
ment complicated the process because error handling, error messages and dependencies kept
changing over time. For a verifiable A/B test, it is essential for the GFM implementation to be
visually identical to the most up-to-date version of the Hedy web environment to account for
any external influence on the performance of the users. Therefore, the GFM implementation
had to be updated several times to keep up-to-date with the public version of Hedy and be
ready for deployment of the A/B testing. This was due to the ongoing development of Hedy
itself: functionality and the user interface changed multiple times during this research.

Another limitation of the implementation within Hedy is the data handling. Due to the original
logging being processed before the interaction with the user, we had no other choice than writ-
ing an additional logging function to store the required GFM data. Through this design choice,
the additional logging is performed from the client-side to the server through an unencrypted
JavaScript POST, making it vulnerable for the data being altered. However, we assume that
this has not happened and have found no signals that this is the case. Another limitation of
this logging process is that the additional logging is only performed after a successful code
submission. So when a user coding in Hedy makes consecutive mistakes but quits before ex-
ecuting a successful program, the user interaction and feedback is not stored and/or asked.
Making us lose valuable research data. This choice was made because otherwise it would be
difficult to ask feedback questions on the interaction at each level of feedback. However, this
could be improved in future work, so a logging is made after each user interaction. The user
interaction should be stored server-side temporarily and be retrieved at each point of inter-
action to update the model-user interaction. While this would increase the server-load, the
additional gathered data would be useful for analysis of the usefulness of the model.

Lastly, a limitation was the lack of programs created in the higher Hedy levels. Due to parallel
research to this Thesis, additional levels were developed at the same time as the Gradual Feed-
back Model. The newest levels would contain unknown bugs, resulting in undesirable behaviour
and faulty error messages, making it difficult to analyse the errors because we were unable to
determine if the mistake was on the user or server side. Also, not many programs were created
on levels 14 and higher, resulting in lack of data for creating similar code files and returning
the users useful suggestions. Therefore, throughout development the choice was made to only
focus on the first 13 Hedy levels due to these being documented well and no longer subject to
change. Therefore, the similar code implementation should be improved and updated in future
work by creating new similar code files on the newest dataset at hand, improving that level of
feedback.
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7 Results

In this section, the results of the Gradual Feedback Model (GFM) implementation within Hedy
are discussed. As discussed earlier, the data is gathered using A/B testing, giving a percentage
of users the original Hedy website while other users receive the Hedy version with GFM. This
section is divided in two main analysis: a comparison analysis and a usefulness analysis. First,
we compare general statistics on data gathered in both versions in the same period of time.
It is important to analyse the same period of time because Hedy is still in development and
other changes (coding errors, visual updates etc.) could influence our results. This analysis
has a similar approach as the general data analysis performed in section 4, looking at error
percentage, drop-out rate and code length deviation. The usefulness analysis will focus on the
user feedback gathered through the model. As explained in section 6 for each code submission
a value of the current feedback level is added to the log and on each successful submission an
additional log is made containing all user interaction on the model. This data is analysed to
get more insight in the usefulness on each level and the user interaction with the model. While
some general statistics will also give insights into the usefulness of the model, this division into
two parts is made to differentiate clearly on the data used for the analysis. For the comparison
analysis the already existing values are mainly used, whereas of the usefulness analysis the
focus lies on the additional values specifically store for the GFM implementation.

7.1 The data

The A/B test ran from June 15th 2021 till July 12th 2021, varying in percentage and duration.
For example, the initial testing was performed with a 10% re-direct value. Meaning that 10% of
the users are re-directed to the GFM implementation while 90% will still be shown the original
Hedy website. For simplicity, we state that the A/B test ran from June 28th till July 12th at a
re-direct percentage of 50%. The users were re-directed at random to one of the versions. A
complete overview of the exact timestamps of A/B testing can be found in Table 22. Through
this testing, a total of 4552 programs is created with the GFM implementation by 116 unique
sessions. The model has been presented a total of 89 times to 48 unique sessions. Meaning
that over 40% of the users has been presented with the model. Notice that this is not the same
as model interaction, which will be discussed later on. For additional feedback to be counted
as interacted, the user will have to have the feedback box expanded to enable the reading of
the message. A visualization of the feedback level at the moment of code submission can be
found in Figure 21. Showing that the largest part of the programs is submitted with feedback
level 0. As the feedback level is updated before the logging process, we know that all these
programs are correct programs. We see an expected pattern of decreasing code submissions
per feedback level as it is expected that more errors are solved throughout the debugging
process, re-setting the feedback level. The increase in feedback level 5 is expected because
the feedback level is only reset at a correct submission or when switching Hedy levels. So,
with more than 5 consecutive errors, the user will still be presented with the corresponding
feedback of level 5 of the Gradual Feedback Model.
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Start date End date Re-direct percentage
June 15 13:18 June 15 14:18 1%
June 17 11:34 June 17 11:36 10%
June 17 14:34 June 17 14:36 10%
June 18 15:34 June 18 15:39 50%
June 21 11:00 June 21 12:00 10%
June 21 13:00 June 21 14:00 10%
June 28 10:56 June 28 15:00 50%
June 30 12:34 July 1 11:20 50%
July 5 10:23 July 9 09:13 50%
July 11 22:48 July 12 19:45 50%

Table 22: Timestamp overview of GFM A/B testing within Hedy environment

Figure 21: Code submission distribution per feedback level
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7.2 Comparison Analysis

In this section, we compare general statistics on the data gathered through the original Hedy
website and the one with the GFM implementation over the same period of time. For simplicity,
we use all data gathered using the model and for the comparison use all data gathered through
the original Hedy website from June 28th till July 12th. While this does not exactly correspond
with the time-windows of the A/B testing, this shouldn’t influence the results because no other
updates have been implementation in any of the two versions of the period of the A/B testing.

7.2.1 Error rate

In this analysis, we look at the error rate at each level. The error rate is calculated as the
normalized amount of programs that result in a server error on a specific level. As with all
analysis throughout this research, we only look at the first 13 levels of Hedy. For the original
Hedy website we find an overall error percentage of 20.03% whereas for the GFM implemen-
tation this is 16.89%., a slight improvement on the model. A visualisation of the error rate
per level for both the original website and the GFM implementation can be found in Figure
22. Interestingly, the original implementation has a higher error percentage at the lower levels,
whereas the GFM implementation has a higher error percentage at the higher levels. Notice
that only the first 11 levels are shown because no (faulty) programs were created in either
level 12 or 13 throughout the time of A/B testing.

We perform a statistical significance analysis to calculate if the decrease in error rate is indeed
significant. The analysis is based on the significance test for comparing two proportions in
categorical data from the textbook on Statistical Methods for the Social Sciences. [1] The
sample size of the original implementation is 7618 programs with an error rate of 20.03% and
the sample size of the GFM implementation is 4552 programs with an error rate of 16.89%.
We assume a desired confidence level of 95% for which we calculate the Z-score of our samples

using Z = (p1− p2)/
√

[p(1− p)(1/n1 + 1/n2)]. Whereas n1 and n2 are the sample sizes and

p1 and p2 the proportions of measurement (in our case the error rate). This results in a Z-score
of 4.282. The corresponding Z-score to a confidence level of 95% is Zα/2 = 1.96. Because
Z > Zα/2 we can state that the decrease in error rate is indeed significant with a confidence
of 95%.

Figure 22: Comparison of error percentage: left (original) and right (GFM implementation)
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7.2.2 Drop-out rate

In this analysis, we look at the drop-out rate at each level. A drop-out is defined as True
is the last submission of code within a specific level run by a unique session results in a
server error. In any other case, the drop-out is defined as False. This is identical as the drop-
out analysis performed earlier in the Hedy data analysis. Similar to the error-rate analysis, a
normalized value is calculated for each Hedy level. A visualisation of the drop-out rate per
level for both the original website and the GFM implementation can be found in Figures 23
and 24. Notice that the levels in the graph without any bar show that no drop-outs are found
according to our definition. The sample size of the original implementation is a total of 443
session/level combinations for which we find 81 having the last submission result in an error.
This results in an overall drop-out percentage of 18.28%. For the GFM implementation, we
find 198 session/level combinations for which we find 50 having the last submissions result in
an error. This results in an overall drop-out percentage of 25.25%. The cause of this higher
drop-out rate is unknown and requires further research in future work to better understand the
motivation behind actions of users. Notice that the session/level combination results in more
samples than the amount of sessions, one session is able to run code on multiple levels.

Figure 23: Drop-out percentage per level (original implementation)

Figure 24: Drop-out percentage per level (GFM implementation)
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7.2.3 Steps to success

In this analysis, we look at the amount of submissions needed to submit a correct program. This
is calculated per session/level combination and visualized using a bar plot with bins per 1 step,
similarly to the general data analysis performed on the original Hedy dataset. A visualisation of
the frequency of steps before a successful submission for both the original website and the GFM
implementation can be found in Figures 25 and 26. For the y-axis, a logarithmic scale is used
due to the high frequency of 1 attempt needed. Visualising on a linear scale would make the
figures difficult to read. The most attempts needed on the original implementation are 67 and
25 on the GFM implementation. However, due to both these values only occurring once, we
can classify them as outliers. For both implementations, we look at the distribution of attempts
needed with a focus on the first 5 attempts because the GFM implementation returns addi-
tional information for the first 5 consecutive mistakes, aiming to help the users at these points.

For the original implementation, we find a total of 6092 session/level combinations for which
5714 are successful on the first attempt, followed by 170 and 68 on the second and third
attempt. For the GFM implementation a total of 3783 session/level combinations is found,
for which 3574 are successful on the first attempt, followed by 93 and 37 on the second and
third attempt. An overview of the steps to success comparison of both implementations can
be found in Table 23. We perform a statistical significance analysis similar to the one per-
formed on the error rate. However, we are now interested if the found difference in the total
distribution on attempts is significant. For the error-rate, we only had categorical data: either
an error or no error. In this case, we can also calculate the mean and standard deviation of
the attempt’s distribution: therefore, a T-test is used instead of a Z-test. The used formula is

slightly different, namely: T = (y2−y1)/
√

(s21/n1) + (s22/n2)). Where y1 and y2 represent the

mean (of attempts needed) for both implementations, and s21 and s22 represent the standard
deviation. n1 and n2 are the sample sizes. Due to the large sample, n > 30 we can assume
the t distribution to follow a standard distribution. [1] Calculations of the T-score we find
1.6965. As we assume a standard distribution, we know that a T-score of 1.96 is needed for a
confidence of 95% on the statistical significance. As T < 1.96, we conclude that there is no
statistical significance in the decrease of steps to success.

Attempt(s) Frequency Percentage Attempt(s) Frequency Percentage
1 5714 93.80% 1 3574 94.48%
2 170 2.79% 2 93 2.46%
3 68 1.12% 3 37 0.98%
4 44 0.72% 4 26 0.69%
5 22 0.36% 5 14 0.37%
6 and on 74 1.21% 6 and on 39 1.03%

Table 23: Steps to success: left (original implementation) and right (GFM implementation)
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Figure 25: Steps to success (original implementation)

Figure 26: Steps to success (GFM implementation)

52



7.3 Usefulness analysis

In this subsection, a usefulness analysis is performed on the data gathered on the GFM imple-
mentation. Notice that the data on the original implementation gathered on the A/B testing is
not used in this section, as the main focus is on the GFM implementation. As explained earlier
in Section 6 we keep track on how the user interacts with the model. Most important are the
user interactions with the feedback box and the answers on the level-dependent questions. Both
are stored in an array with values being either True, False or None. For the array of interaction:
True when expanded by the user, False when not expanded and None when the level of feed-
back hasn’t been reached. And for the feedback questions: True when the user answers Yes on
the level-dependent question, False when answering No and None when the level of feedback
hasn’t been reached. Lastly, a ”-” is stored when the user decides to close the question window.

First we look at the interaction rate. The interaction rate is divided in two parts: First, we
analyse if a unique session has had any interaction with the model at all (expanded any level of
feedback). Then we focus on the interaction rate per feedback level of the model. As explained
in Section 6 the title of the feedback box is level-dependent, already giving the user informa-
tion on the expected information before expanding the box. For both, a different analysis is
performed between the general percentage of interactions and the percentage of interactions
only looking at unique users. A large difference in these numbers would suggest that the model
has less added value when being interacted with multiple times, making the users no longer ex-
pand the feedback box. Then we analyse the feedback given by the user on the level-dependent
questions. Giving insight in the usefulness of the different levels of the model. All are visual-
ized using bar plots. Next to the level-dependent questions, the general feedback question is
analysed and visualized as well. Followed by an analysis of the copying behaviour of the user.
We compare the code submission of a unique session before and after being presented with
the similar code level of feedback to analyse the code-changing behaviour.

7.3.1 GFM interaction rate

In this section, we analyse the user interaction rate with the model. We analyse the interaction
of the user with the model in general, as well as the interaction with each level of feedback.
First, we look at the general interaction with the model. Interaction is stated as having ex-
panded one or more levels of feedback. So, if any level of feedback is expanded by the user,
we count this as interaction. We filter on all situations where the model has been presented
to the user. This is the case when the array of Booleans of the collapse value contains either
a True or False value. For a total of 85 sessions 41 had interaction with the model while 44
hadn’t. Respectively, 48.2% and 51.8%. A visualization of the results can be found in Figure
27. Notice that we don’t filter on unique sessions, and the value of 85 sessions is not the same
as the unique amount of users. We are also interested if a unique session (or user) has had any
interaction with the model at all, for example when the model being presented multiple times.
Therefore, we iterate over the different sessions and analyse if any of the collapse value is
True, in that case we know the user interacted with one or more levels of feedback. For a total
of 48 unique sessions 26 had interaction with the model while 22 hadn’t. Respectively, 54.2%
and 45.8%. This interaction rate is visualized as well and can be found in Figure 28. There
is a slightly higher percentage in interaction rate when focusing on unique sessions. However,
this is not significant and the expected decrease in interaction rate over time is not found.
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Figure 27: GFM overall interaction rate

Figure 28: GFM unique overall interaction rate
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Next, we look at the interaction rate at each specific level of feedback. On the front-end
implementation, each level of feedback has a unique title on the feedback box, already giving
the user information on the expected help in the box. Titles are short but explanatory, such as
similar code or suggestion. A level of feedback is returned to the user, a total of 164 times for
which they expanded the window 51 and 113 times they didn’t. This interaction rate is lower
than expected, especially on the higher feedback levels. The cause is unknown and should be
further researched in future work. An overview of all levels can be found in Table 24. Notice
that in this case we look at the total amount of model interactions, not only at unique session.
For example, the similar code level has been shown 40 times, but only to 20 unique sessions.

In Figure 29 the interaction rate is plotted for each level of feedback. We see that interaction
rate is the highest for the first level of feedback, something that is expected. Surprisingly,
the interaction rate of the similar code level is around 25%. This was expected to be (far)
higher. Similar to the general interaction rate, we do an additional analysis for unique sessions,
analysing if the user has had any interaction with the specific levels of feedback. For example,
when they decided to not expand the window on the first interaction possibility but did so on
the second one. These numbers are visualized as well and can be found in Figure 30. There
seems to be a slightly higher percentage on interaction, but not significant. Which supports
the earlier stated conclusion that users interested in the model keep interacting with it, while
users that aren’t interested will keep their same behaviour. An overview of the numbers can
be found in Table 25.

Feedback Level No Yes
Expanded Error 50 35
Similar Code 31 9
New Concepts 21 4
Break Suggestion 11 3

Table 24: GFM feedback levels interaction rate (total)

Feedback Level No Yes
Expanded Error 24 24
Similar Code 20 7
New Concepts 16 4
Break Suggestion 9 3

Table 25: GFM feedback levels interaction rate (per unique session)
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Figure 29: GFM interaction rate for each feedback level

Figure 30: GFM unique interaction rate for each feedback level
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7.3.2 Feedback usefulness

In this section, we analyse the user feedback on the yes/no questions asked when a correct
program is created after making consecutive mistakes. The questions are only asked if the users
interacted with the level specific for that questions. The general feedback is always asked if
any interacted has occurred at all. First, we look at the answers to the general feedback ques-
tion, in total as well as per unique session. Then we analyse the answers to the level-specific
questions. Similarly, we also look at the total and the answers per unique session. With the
analyses on unique sessions, we analyse if the user did perceive the level as useful at least once.
So, for example, when being presented the level of feedback four times, three times answering
False and one time True. In the case when only False and ”-” are answered, False is choosing
as the user’s answer. The unique usefulness will still be counted as True.

The general feedback question is asked a total of 41 times, for which 17 are answered with
True, 16 with False and 8 users closed the question window (automatically answering ”-”).
In 45 cases, none of the levels of feedback is expanded, so the general feedback question is
not asked, as there hasn’t been any user-model interaction. These numbers should be cor-
responding with the interaction rate analysis, but for unknown reasons we find 45 cases of
None instead of the expected 44. The exact numbers in total as per unique session can be
found in Tables 26 and 27. The visualization calculated as a percentage of total answers per
feedback level can be found in Figures 31 and 32. Notice that the general question is not
included in the visualization. The found usefulness rate is slightly higher for overall interaction
per unique sessions than in total, suggesting that the model has diminishing usefulness over
time. However, this difference is not significant, and no clear conclusion can be drawn without
further research.

Feedback Level Yes No -
General Question 17 16 8
Expanded Error 14 15 7
Similar Code 4 3 2
New Concepts 5 0 0
Break Suggestion 1 3 0

Table 26: GFM feedback levels usefulness rate (total)

Feedback Level Yes No -
General Question 14 8 4
Expanded Error 13 8 3
Similar Code 3 2 2
New Concepts 4 0 0
Break Suggestion 1 2 0

Table 27: GFM feedback levels usefulness rate (per unique user)
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Figure 31: GFM usefulness rate for each feedback level

Figure 32: GFM unique usefulness rate for each feedback level
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7.3.3 Copying analysis

In this section, we analyse the copying behaviour of users after having interaction with the
similar code level of feedback. The (faulty) code being submitted before the similar code in-
teraction is compared to the similar code. Followed by comparing the submitted code and
suggested similar code after the interaction with the feedback level. An increase in similarity is
expected, indicating that the users copy or at least get inspiration from the suggested code. Due
to the complexity of the task at hand, the filtering and selecting of code is performed manually.

First, all submissions containing a value for the similar code value in the dataset are filtered.
Then for each of these sessions they are manually tracked to compare the code submission on
feedback level 3 (the similar code is received) and feedback level 4 (following code submis-
sion). To improve the analysis, only users with interaction on the similar code feedback level
are analysed. In the case of not expanding the feedback box similar code is still calculated,
stored and returned, but the users didn’t have any interaction. Performing a copying analysis
wouldn’t make any sense in this case. A total of 20 sessions reached feedback level 3 for which
9 interacted with the model and 11 didn’t. 7 of these sessions were unique. For each of these
7 sessions, we manually retrieve the code submissions and analyse the code submissions. In
most cases the similar code does not seem to have influence on the code-changing of the user,
most error where small and solved by adding a comma or correcting a misspelled keyword. It
is unclear if the similar code did help the user or that the user simply spotted the mistake
themselves. The errors are too small to determine the behaviour from data analysis alone. We
look closely at one user to look more in-depth at the code-changing behaviour.

One (anonymous) user is struggling to execute a correct Hedy program on level 2. An ini-
tial attempt is made to ask the user for the name of their dog and then print this name. But
the user created a variable consisting of two words, something that is not allowed in Hedy. The
restriction that variable names are not allowed to have spaces is unclear to the user, and the
error messages do not help solve the problem. An error message is returned stating that the last
character at line number 1 is not allowed because it’s a punctuation mark. The user replaces
the ? by a . character, but still the same error is returned. This behaviour is not the fault of
the user, as the original error message is solved correctly; removing the faulty character. The
mistake is in the error message, that returns a wrong message due to not correctly catching
the two-words-variable mistake on the next line. After removing all punctuation marks at line
number 1 a new error is return that the word dogs is not a command in Hedy level 2. Closer
to the actual problem, but still not helping the user. The returned similar code, which has a
one word variable, does not help the user with the problem because he is not understanding
the mistake at hand. We argue that similar code is only useful when the user understands the
problem but can’t find it, but does not provide useful information when the current error is not
understood, as nothing is learning from copying an example. Similarly, all additional feedback
returned to the user is not useful, as the original mistake and corresponding error messages
are unclear and confusing to the user. Returning extra information (that does not suggest a
solution either) does not help to solve the error. An overview of the code-changing behaviour
of this user can be found in Code Snippets 4, 5, 6 and 8.
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dogs name i s ask What i s y ou r dogs name?
p r i n t dogs name i s y ou r dogs name !

The code you e n t e r e d i s not v a l i d Hedy code .
There i s a m i s t a k e on l i n e 1 , a t p o s i t i o n 4 0 .
You t y p e d a q u e s t i o n mark , but t h a t i s not a l l o w e d .

Code 4: First attempt and corresponding error message

dogs name i s ask What i s y ou r dogs name .
p r i n t dogs name i s y ou r dogs name !

The code you e n t e r e d i s not v a l i d Hedy code .
There i s a m i s t a k e on l i n e 1 , a t p o s i t i o n 4 0 .
You t y p e d a p e r i o d , but t h a t i s not a l l o w e d .

Code 5: Second attempt and corresponding error message

dogs name i s ask What i s y ou r dogs name
p r i n t dogs name i s y ou r dogs name !

dogs i s not a Hedy l e v e l 2 command . Did you mean i s ?

Code 6: Third attempt and corresponding error message

name i s ask what a r e you d o i n g name?
p r i n t name i s what you a r e d o i n g ?

Code 7: Similar (correct) code returned to user

c o l o r i s ask What i s you r f a v o r i t e c o l o r ?
p r i n t c o l o r i s y ou r f a v o r i t e !

Code 8: User’s final code submission

60



8 Discussion

In this section, we discuss the results of the Gradual Feedback Model implementation and
the corresponding A/B testing. First we discuss the general results such as the error rate and
drop-out rate. Then we look at the overall results of the model implementation and discuss
unexpected findings and their possible explanations. Finally, we discuss the limitations of the
model implementation and how they could have influenced the results.

8.1 Results

While we find a decrease in error rate and through statistical analysis conclude that this is
indeed significant, we are unable to support this finding by our other analysis. For unknown
reasons, we find a significant increase in drop-out rate between the original and the GFM imple-
mentation. A feature that we state as an important indicator for error message understanding.
It might be that our definition of a drop-out is too broad, and further work should investigate
further on classifying a drop-out. We also find no indication that the GFM implementation
helps users solve their errors faster, as the steps to success analysis indicate no difference be-
tween both implementations. The higher findings for the original implementation can be seen
as outliers. The total model interaction rate is slower than expected, being slightly higher than
54% on unique user interaction and slightly higher than 48% on total amount of interactions.
Notice that this is classified as having interaction with at least one level of feedback before
running correct code. The interaction rate per level shows a similar pattern, being higher for
unique users and decreasing over time with the total amount of interactions. Especially the low
interaction rate on the similar code level is unexpected and future work should aim at better
understanding the behaviour patterns of users when error solving. Similarly, the model use-
fulness follows an almost identical pattern: being higher for unique users and decreasing over
interactions. Suggesting that the users perceive the model as less useful when being presented
with it multiple times.

8.2 Limitations

Several limitations are found and/or introduced in the model and the implementation within
Hedy. The first limitation is the linear implementation of the similar code finding. Due to
the structure, identical correct code is proposed when a user makes a mistake with the same
keyword structure. When a programmer is stuck at a program and does not make significant
changes between faulty submissions, the chances are they receive the same, similar code. Which
is not useful, because it didn’t help them solve the problem the first time. Another limitation on
the implementation is the lack of model-user interaction data. Only when consecutive faulty
submissions are followed by a correct submission the feedback questions on the model are
asked. Other than the collapse value, no other model-user interaction data is gathered and/or
stored. This complicates the process of data analysis and the conclusions drawn. One might
also be interested in the time between a faulty submission and the expanding of the feedback
box. For which we can conclude if the user first reads the original error message or directly
expands the feedback box and reads the additional one generated by the model. While this
would be difficult to implement within Hedy due to the current code structure, it is still a
limitation in the research.
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9 Future Work

In this section, possible future work is discussed on the research of this Thesis. Several small
suggestions were already made throughout the Thesis, where the different design and imple-
mentation choices were explained. As well as the discussion on the results and the limitations.
However, in this section, a differentiation is made between three large possible sections of
research to further improve the Gradual Feedback Model and/or the implementation.

9.1 Improving the implementation

One large aspect of improvement would be the feedback logging. Currently, the interaction
with and feedback on the model are only logged after a successful code submission. So if,
after some mistakes, no correct submission is made, the interaction from the user with the
model is never logged. This is due to the structure of the Hedy web environment. Currently, a
first logging is made server-side right after the parsing, whereas the interaction logging should
be made after the user has received and interacted with the website. Due to this difficulty,
the choice was made to temporary store the interactions between the user and the model and
make a GFM logging once: after a correct code submission. While this is a good choice from
the server-load perspective, useful data on interaction is lost due to a user quitting before a
correct submission. This aspect can and should be improved when aiming to improve the GFM
implementation within Hedy.

9.2 Increasing usefulness

As found in the data analysis of the user feedback on the Gradual Feedback Model, there is a
difference per feedback level on the user’s perception of usefulness and the interaction rate is
lower than expected. Due to COVID-restrictions, we were unable to perform any observational
studies on novice programmers to better understand their error solving behaviour and error
message needs. All insights were found through similar work or data analysis on the Hedy
dataset. An observational user study should be performed to better understand what user
perceive as useful error messages and how to improve these. The observational study can be
conducted within a primary school classroom combined with interviews when using the Hedy
implementation, or in any Introduction to Programming course on Python when creating a
Python implementation of the Gradual Feedback Model.

9.3 Language-independent implementation

As explained in Section 5.2 the concept of the model is suitable for any textual programming
language. Due to the small syntax possibility of Hedy and the corresponding relatively small
programs, the additional feedback messages might not be as useful as expected. It should be
interesting as future work to implement the model within Python to analyse the usefulness
on a programming language with more programming syntax and possibilities. It should be
noted that the feedback level of new concepts does not apply for non-gradual languages, as
all programming concepts and syntax are available from the starting point. The model should
be altered at this level, while all other level are language-independent. There is no suggestion
on an alternative for this feedback level, and it is advised to research this in combination with
the observational study to get more insights in the feedback needs of the user.
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10 Conclusion

In this section, we conclude on the work done. The data analysis on over 1 million Hedy
programs gave useful insights in the mind and behaviour of novice programmers. While the
in-development status of the Hedy programming language complicated the process, levels and
structures kept changing over time, a good general view could be created. Combined with the
literature review on similar work and the literature study on other research in the field of pro-
gram analysis, a good foundation was created for error message improvement. The proposed
model: the Gradual Feedback Model has been implemented within the Hedy web environment
and tested through A/B testing.

We find a statistical significance on the decrease in error rate with a confidence interval
of over 95%. For which, we can conclude that the model does indeed help decrease the errors
made by novice programmers. No decrease (but instead an increase) in drop-out rate is found,
as well as no significant difference is found in the steps to success. Concluding that other than
the significant decrease in error rate, there are no clear indications on the usefulness of the
Gradual Feedback Model. We found an interaction and usefulness rate, which are both lower
than expected. Through a copying analysis, we found no indication that users use the similar
code as a debugging strategy and copy code to solve the error at hand.

Future work should be conducted to improve the implementation of the model within Hedy.
By keeping tracking of the user-model interaction and gather more useful data to better un-
derstand the user. To improve the model itself, an observational study should be conducted
followed with one-on-one interviews to better understand the user needs on error messages and
additional help throughout the debugging process. Lastly, the model should be implemented
in another textual programming languages such as Python to compare the interaction and
usefulness of the model between Hedy and a programming language with more complexity and
a larger syntax library.
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11 Appendix A: GFM Hedy Messages

In this Appendix, all GFM messages implemented within the Hedy environment are shown in
different tables. Notice that their correlation with the Hedy implementation is not shown, and
the tables are only here for completeness of the implementation discussion. For a complete
overview of their connection with the original Hedy error handling, one should look at the
open-source project on GitHub. [3] All messages can be found in Tables 28, 29, 30 and 31.

Error name Message
Expanded Wrong Level Remember, Hedy is a gradual programming language.

That means that the commands can differ for each level.
Expanded Incomplete Your code is incomplete, try to finish it with the error

message above.
Expanded Invalid You used a command that doesn’t exist. Take a closer

look if you haven’t made a mistake by accident or used
a non-alphabetical letter at a weird spot.

Expanded Invalid Space Just like with normal text we don’t want to start with
a whitespace, put your code at the most-left side of the
screen.

Expanded Parse You’re not allowed to use all characters at every spot,
then the computer won’t understand! Try to solve the
error with the message above.

Expanded Unquoted Text You forgot a quote somewhere. Remember that each sen-
tence you want to print should start and end with a
quotation mark.

Expanded VarUndefined You can’t print a variable if it doesn’t exit. Do you want
to print text? Take a closer look at how to use the print
command in this level.

Expanded Unknown Computers doesn’t always understand it either, take a
close look at your code and otherwise try it again.

Table 28: GFM Hedy implementation Enhanced Messages

Error name Message
Identical code If you don’t change anything the same error will occur. Remember:

computers will always respond the same way!
No similar code No similar code has been found...
Break You seem to be stuck at this level, take a little break and try it

again later.

Table 29: GFM Hedy implementation Additional Messages
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Error name Message
New level1 Remember, in level 1 we can only use the ”print”, ”ask” and ”echo”

commands.
New level2 Remember, the use of a name is new in level 2.
New level3 Remember, printing something between quotes is new in level 3.
New level4 Remember, the ”if” and ”else” commands are new in level 4.
New level5 Remember, the ”repeat” is new in level 5.
New level6 Remember, the use of ”calculations” is new in level 6.
New level7 Remember, using ”indents” is new in level 7.
New level8 Remember, the ”for” command is new in level 8.
New level9 Remember, The ”:” symbol the line before the indent is new in level

9.
New level10 Remember, using ”for” and ”if” nested is new in level 10.
New level11 Remember, brackets around ”print” and ”input” are new in level

11.
New level12 Remember, lists work differently in level 12: we know need ”square

brackets”.
New level13 Remember, for a comparison we use ”==” in level 13.

Table 30: GFM Hedy implementation New Concept Messages

Error name Message
Feedback general It works, well done! Did you perceive the additional informa-

tion (in the blue box) as useful?
Feedback question2 Did the extended explanation help you to solve the error?
Feedback question3 Did the similar code help you to solve the error?
Feedback question4 Did the recap on the new elements help you to solve the error?
Feedback question5 Did the break suggestion help you to solve the error?

Table 31: GFM Hedy implementation Feedback Questions
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