A Framework for the Localization of Programming Languages

SPLASH-E ’23, October 25, 2023, Cascais, Portugal

A Framework for the Localization of Programming
Languages

Alaaeddin Swidan
alaaeddin.swidan@ou.nl
Open University of the Netherlands
Netherlands

Abstract

Most programming languages are only available in English,
which means that speakers of other languages need to learn
at least some English before they can learn to program. This
creates well-documented barriers to entry into programming.
While many educational programming languages are local-
ized in some way (e.g. keywords), they often miss impor-
tant other aspects (e.g. numerals or word order). This pa-
per describes a framework of 12 aspects of programming
languages that can be localized, helping tool designers lo-
calize their languages better and educators to make more
informed decisions about introductory languages in non-
English contexts.

CCS Concepts: + Applied computing — Education; - Soft-
ware and its engineering — Software creation and man-
agement; General programming languages.

Keywords: programming languages, localization

ACM Reference Format:

Alaaeddin Swidan and Felienne Hermans. 2023. A Framework
for the Localization of Programming Languages. In Proceedings
of the 2023 ACM SIGPLAN International Symposium on SPLASH-
E (SPLASH-E °23), October 25, 2023, Cascais, Portugal. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3622780.3623645

1 Introduction

According to language center Ethnologue, over a billion peo-
ple in the world speak English, meaning about 6 billion do
not.! Despite that, the world of software is largely an Eng-
lish centric world. Localization is a topic that has received
considerable attention in the HCI community, which has
consistently highlighted its importance [23, 33], however lo-
calization is expensive and hard to automate [21].

Thttps://www.ethnologue.com/insights/ethnologue200/

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

SPLASH-E °23, October 25, 2023, Cascais, Portugal

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0390-4/23/10.
https://doi.org/10.1145/3622780.3623645

Felienne Hermans
f.fj.hermans@vu.nl
VU Amsterdam
Netherlands

As such, most programming languages are only available
in English. For speakers of other languages, especially for
those belonging to small or marginalized linguistic groups,
the only option is to program in English from their first
line of code. In many cases, learning programming takes
place before or during learning English. Prior work has
shown that performance in English is correlated with pro-
gramming ability. Furthermore, both students and teachers
indicate that English is a barrier for Arabic speaking stu-
dents [6, 15].

English is visible in various parts of the programming
experience. Firstly, in nearly every widely used program-
ming language, the names of symbols and keywords (if, else,
while, for) are borrowed from English. Not only are the key-
words are in English, the way keywords form statements of-
ten resembles pronounceable sentences in English; ‘if x = 5°
can be read as the sentence ‘if x equals 5. Finally, almost
all programming languages only accept numerals 0 to 9 for
calculations. *

The impact of the English-centricity goes beyond aspects
of the programming language itself; compilers often make
assumptions about user chosen parts of programs, such as
identifier names, and assume these will always be in Latin
letters (a-z). Some languages (like MATLAB) even limit the
characters which may be used in comments, causing users
to be unable express themselves in their native language in
code comments, parts which are not even executable.

The goal of this paper is to describe a framework encap-
sulating the aspects of programming languages that can be
translated to non-English, including decisions about key-
words, numerals and non-letter characters. We demonstrate
the applicability of our framework by applying it to evaluate
13 different programming languages, many of them educa-
tional languages, demonstrating that localization of these
aspects in a programming language is indeed possible.

The use of this framework is two-fold. Firstly, it can be
used both by language designers interested in assessing and
improving the localization possibilities of their own languages.
Secondly, this overview will support educators in selecting
localized languages to teach with if they aim to also support
non-English students.

2Forrnally these are called the Hindu-Arabic numerals, but for the sake of
clarity we call these English numerals in the remainder of this paper.

https://orcid.org/0000-0001-9236-858X
https://orcid.org/0000-0003-0722-0156
https://doi.org/10.1145/3622780.3623645
https://www.ethnologue.com/insights/ethnologue200/
https://doi.org/10.1145/3622780.3623645

SPLASH-E ’23, October 25, 2023, Cascais, Portugal

2 Background

Several non-English programming languages have been de-
veloped since the beginning of the 1960s to ease program-
ming in languages other than English, often in an educa-
tional context (see further 4). In this section, we explore the
difficulties that learners have when faced with non-English
programming languages.

2.1 Error Messages

The aspect of programming languages most often localized
are compiler error messages. Error messages are hard to un-
derstand for any novice, and them being (partly) in English
adds an extra barrier for non-English novices. For example,
Nnass et al. [27] compared the difficulties of Australian stu-
dents to Libyan students and found that while only 2% of
Australian students name error messages as a major prob-
lem in learning to program, 71% of (Arabic speaking) Libyan
students named error messages. Reestman and Dorn [31]
found a significant difference between native speakers and
non-native speakers (Spanish, Chinese, Korean and Japan-
ese) albeit with a small effect size.

In a survey among 150 students speaking isiZulu, isiX-
hosa, and Afrikaans in which the majority indicated that
they believed that localized compiler messages would help
them learn programming more effectively[26], and students
with a good command of English indicates that they would
value localized error messages as often as students with lower
proficiency.

Different approaches for localizing error messages have
been suggested over the years. For example, Roehner [32],
suggest to automatically translate error messages, describ-
ing both approaches that use a (hand-made) dictionary and
an approach using machine translation.

2.2 Teaching CS in non-English

Teachers need to consider the language of instructions when
teaching a topic to a non-native English audience. Learn-
ers could face difficulties that originate from the need to
develop English understanding at the same time that they
are expected to learn about the topic’s conceptual knowl-
edge [15]. Additionally, a mismatch between the native lan-
guage of the students and the native language of the teacher
can hinder the relatedness of the topic and the classroom
engagement [16, 20]. Pal and Iyer [28] investigate the effec-
tiveness of using the native language versus English as the
vocal instruction language in videos that contain English
slides while teaching programming at the university level.
They report that students who got instructions in the same
native language that was used during their K-12 education
(either English or Hindi) outperform the Hindi speaking and
K-12 taught students who received instructions in English.
In some other cases, the English language can become a bar-
rier for reasons related to culture and values, for students

Alaaeddin Swidan and Felienne Hermans

and teachers. Gyabak and Godina [16] developed a course
of digital story telling to improve the digital literacy of stu-
dents in Bhutan. To their surprise, the English interface of
the software environment was an obstacle to many students
and teachers who had an ‘embedded sense of historical and
colonial perceptions about the English language’. Soosai Raj
et al. [35] compared two versions of an operating systems
course: one in Tamil and English and one in English only.
They found no effect on learning outcomes but a significant
effect on engagement in terms of more dialogue in the class-
room where students could communicate in their native lan-
guage.

Previous work has documented some of the issues that
non-English learners have in using English programming
languages. For example, Qian et al. [29] discuss the specific
issues that Chinese learners face while using Python. For
example, there are characters in Python deceivingly simi-
lar to their Chinese counterparts, but are not exactly the
same. For example, compare Chinese brackets: (and)
to Python’s (and). This leads to confusing errors.

Quite some work has looked at the transition between
block based languages and text-based languages, but implic-
itly assumes the transition happens between two English
language systems, for example [5], while most block-based
systems support some localization. Papers that did look
at two different natural languages, like Espinal et al. [11]
who studied switching from blocks in Spanish to Python,
found that that gap is large. Students for example stated
they did ‘...not understand the program because there are
some words in English’.

Block-based languages, as explained above, are often bet-
ter localized than their textual counterparts, and thus al-
low for experiments into the effect of localized program-
ming languages on learning. Dasgupta and Hill [9] found
that children that were programming in their own language
learned programming concepts faster than their counterparts
programming in English. The languages in this paper were
all Latin languages written left to right (Italian, Portuguese,
Brazilian Portuguese, German and Norwegian), so the dif-
ference might be even larger for non-Latin right to left lan-
guages. Other work on Spanish speakers using block-based
languages showed that interaction with tooling is hampered
when students native language is inconsistent with the lan-
guage featured in the tool [12].

3 Localizable aspects of programming
languages

Despite the existence of many localized programming lan-

guages, we are not aware of work that details the design

considerations when building localized languages. Many lo-

calized programming languages are simply translations of

existing English languages, which do not always take into

A Framework for the Localization of Programming Languages

account the possibility of making changes away from Eng-
lish. This paper aims to present a comprehensive overview
of 12 aspects that could be localized in a non-English pro-
gramming language.

3.1 Alignment with Existing Language

The first aspect of a localized language is whether it is made
as a translation of an existing language of which one local-
izes the keywords, or whether it will be a newly designed
non-English language.

Some languages translate an existing language and trans-
late the base language’s keywords, or are heavily inspired by
an existing language. <8 is an example of such a language;
it is a translation of Lisp using Arabic keywords. Alf. Eih is
another example, which is an Arabic translation of C++ [30],
and Phoenix is a translation of C# [4].

Other languages, such as the Wenyan language [7],° or
the Dolittle language [24] are designed from their inception
to be non-English.

While translating is easier because fewer decisions will
have to be made and existing tooling can be used, designing
a PL for one natural language offers the possibility to use
native constructs in programming. For instance in Arabic
PL Ammoria, you can use different forms to indicate the
number of times a loop iterates: singular (6_), dual (),
or plural (<).

In other cases, translation might not be feasible because
the language differs too much from English. In Turkish, the
keyword while is translated as ‘iken’, but placed after the
condition rather than before it (i==0 iken), most likely re-
quiring changes to existing tooling. In Standard Chinese the
keyword in, translated as ‘& B T, is usually placed around
a word, rather than before it: ‘In the house’ (house being
‘B’)wouldnotbe 7 EH B but ‘7 B FE W . Assuch,
a natural translation of a language construct like for item
in list would be for item 7 list B2 .

3.2 Keywords

Whether you are translating an existing programming lan-
guage or creating one from scratch, decisions about the key-
words will have to be made, and the influence of existing
English programming languages cannot easily be ignored.
Because non-English programming languages are often cre-
ated by people with a good command of English themselves,
it is hard to not take known word meanings into account.
For example, the keyword print, is used in several pro-
gramming languages, but it also means printing on paper.
This leads to interesting choices if your natural language
has different words for showing something and for printing
on paper. Dutch for example has the word ‘tonen’ meaning

Shttps://wy-lang.org/
4Note that spaces are not common in Standard Chinese, we add them to
increase readability for unfamiliar readers.

SPLASH-E ’23, October 25, 2023, Cascais, Portugal

showing, but also the word ‘print’ that exclusively means
printing on paper with a printer. What would be the better
choice here? This is even more complex for languages that
have a dedicated word for printing digitally or printing on
the screen.

The problem lies in the fact that English keywords often
have very specific meanings, for example a keyword like
echo. The literal translations of echo are mostly associated
with the natural phenomenon of sounds reflecting or com-
ing back from a surface. In the programming context, how-
ever, the command is mostly associated with ‘repeating’ cer-
tain values passed to it. The decision to either be closer to
the translation or select a word closer to the programming-
context is not trivial.

3.3 Variable names

Traditionally, most programming languages only allow vari-
able names consisting of Latin letters, combined with num-
bers and often special characters including the underscore.
The assumptions about variable names are visible, but not
explicitly named in our literature. The famous Dragon book
on creating programming languages explains identifiers as
shown in Figure 1. However, the fact that other languages
use different numerals and letters remains unaddressed in
the entire book [1].

Example 3.5: C identifiers are strings of letters, digits, and underscores. Here
is a regular definition for the language of C identifiers. We shall conventionally
use italics for the symbols defined in regular definitions.

letter- — A|B|---|Z|a|b]|---|z]-
digit - 0|1]---|9
id — letter_ (letter- | digit)*

Figure 1. Identifiers as explained in Compilers: Principles,
Techniques, and Tools (2nd Edition), 2006

Newer works covering building programming languages,
such as the (otherwise lovely) book by Nystrom, use a defi-
nition similar to the one in Figure 1

This problem is also visible in tutorials. When trying to
find examples of a simple programming language with a
Google search for ‘simple lexer’, all of the results on the first
search page assume an alphabet of a-z and A-Z and digits 0-
9, and do not explicitly mention the cultural bias therein.® °
7

The problem of Latin variable names continues from re-
sources about building language, to tools to create program-
ming languages. Lark,® a widely used parser framework
for Python, uses the following definition for variable names
(simplified here for readability):

Shttps://balit.boxxen.org/lexing/matching_literals.html
®https://gist.github.com/arrieta/1a309138689¢09375b90b3b1aa768e20
"https://beautifulracket.com/basic/the-lexer.html
8https://github.com/lark-parser/lark/blob/master/lark/grammars/
common.lark

https://wy-lang.org/
https://balit.boxxen.org/lexing/matching_literals.html
https://gist.github.com/arrieta/1a309138689e09375b90b3b1aa768e20
https://beautifulracket.com/basic/the-lexer.html
https://github.com/lark-parser/lark/blob/master/lark/grammars/common.lark
https://github.com/lark-parser/lark/blob/master/lark/grammars/common.lark

SPLASH-E ’23, October 25, 2023, Cascais, Portugal

LETTER: Ilall . IIZII I lIAIl . IIZII
DIGIT : 0..9
CNAME : ("_"|LETTER) ("_"|LETTER|DIGIT)*

A programmer using Lark, not aware of localization is-
sues, using the built-in variable (something simply accom-
plished by using import common.CNAME), might not even
realize that they are creating variable names that only allow
for Latin letters and numerals.

Recently some languages are starting to allow all Unicode
characters. For example, both Python and Lua now support
non-Latin letters.”,'

While allowing non-Latin characters in variable names is
a big step forwards to more inclusivity for non-English lan-
guages, it does not suffice entirely. For example, some lan-
guages have words containing characters that are generally
not considered letters by English speakers and (thus) often
by parsers. Ukrainian, for example, allows words to contain
a single quote; ‘iM'a’ for example means name and is thus
quite likely to occur in identifier names. Using quotation
marks in identifiers is not allowed by the majority of textual
programming languages (Lisps like Clojure, and functional
languages like Haskell being the exceptions). Block-based
languages like Scratch and Snap! do support variable names
with all characters, and even allow names that consists en-
tirely of numbers from all numeric systems (such as 1), a
feature that is used in some programs [37].

3.4 Productions

In addition to the keywords themselves, the way they are
used to form constructs too can be English-centric. Many
constructs in English programming languages somewhat re-
semble sentences that can be pronounced as such, for exam-
plefor fruit in basketorif temperature == 5. When
implementing a non-English programming language, these
productions could be made more natural sounding in the
natural language, for example in German, one would not
say ‘if x is 5’ but ‘wenn x 5 ist’ placing the verb at the end
and in Korean one would not say ‘turn left’, but ‘left turn’.
Other languages have words that will never be able to
fit in the mold of English. For example, in Turkish, the key-
word while is translated as ‘iken’, but placed before the con-
dition, such that a natural way of phrasing would be i==
iken. Or, in Standard Chinese the keyword in, translated
as ‘7 2 W’ comes around a word, rather than before it: ‘In
the house’ (house being ‘&’) would not be ‘& 2 &’ but
‘7& B F E T . Assuch, anatural translation of a language
construct like for item in list would be for item %

list B .1

http://www.python.org/dev/peps/pep-3131
Phttps://www.lua.org/manual/5.3/manual.html#6.5

1Note that the spaces are used to easy readability for readers not familiar
with Chinese, these are not commonly used in Standard Chinese sentences.

Alaaeddin Swidan and Felienne Hermans

There are localized programming languages that use a
non-English word order, for example Dolittle is a Japanese
programming language which uses Japanese word order (Sub-
ject Object Verb).!2. For example 7¢D7z | 100 #x<,
meaning ‘bite 100 forward’ is used to move a turtle called
‘bite’ forward 100 pixels.

In addition to different word orders, different modifica-
tions also exist. Some languages use a so-called separable
verb, where a verb can be split and placed in different places
in a sentence, for example in Dutch ‘afdrukken’ means print-
ing, but when used in a sentence with an object, it becomes
‘druk ... af’ around the object. As such a translation of ‘print
hello word” would be ‘druk hello world af’ which sounds
natural, but would be hard to put into existing program-
ming language syntax, especially when print() is a func-
tion. Changing the syntax to a more common druk_af('hello
world')) is often possible, but removes the correct word or-
der. Splitting the function name around arguments (some-
thing like druk('hello world')_af is more natural. This
construction, also called a mixfix operation [8]) is not usu-
ally supported in traditional programming languages (Smalltalk
and ObjectiveC are a notable exceptions, in addition to proof
assistants Coq and Isabelle).

Hindu-Arabic 0 1 2 3 4 5 6 7 8 9 10
Arabic L T T S-S U 2 SR W W
Hindi o ¢ 2 3 ¥ Y9 & b ¢ R’ %o
Bengali o %Y VW 8 ¢ VY 94 v & o
Thai o ® b o & & » o «© « o0
Chinese = = § e
— - = m
(Mandarin) O m A K £t /A A +

Figure 2. A list of known numeral systems [22]

3.5 Numerals and numbers

Another aspect of consideration for language builders are
about numerals. There are several different numeral sys-
tems that are used in different language families. Figure 3.4
shows an overview of numeral systems. While Hindu-Arabic
numerals (0 to 9) are the most used around the globe, other
numeral systems are commonly used, especially in K-12 teach-
ing.

However, non-English numerals are rarely supported in
programming. Even programming languages that allow for
localization, such as Scratch and Snap!, do not also allow for
localization of numerals. In Scratch, non-English numerals
can be entered in numeric slots, but the block will not be
executed because the numeral is not recognized, without
showing an error message. In Snap!, non-English numerals
cannot be entered in numeric slots.

Learners will also see that when working with computers
they have to detach from part of their native language and

Zhttps://dolittle.eplang.jp/

http://www.python.org/dev/peps/pep-3131
https://dolittle.eplang.jp/

A Framework for the Localization of Programming Languages

use something foreign, opposite to other topics, which could
put a gap between them and programming. In her ethnopro-
gramming model, Laiti stresses that such cultural elements
are important to the learner especially for non-English con-
texts [20].

Even using English numerals (0 to 9) there can be differ-
ences impacting programming language design. For exam-
ple, many non-English, European languages use commas
as decimal separators and periods as thousand separator:
2,041.35 in English is 2.041,35 in French or Italian. ometimes
also the apostrophe is used as thousand separator (2°041) or
a high point (2°041). The places of separators can also differ;
in India and some of its surrounding countries 10 million is
written as 1,00,00,000 and not as 1.000.000 as in other Eng-
lish speaking countries. Creating a language that feels nat-
ural for many European users might impact how numbers
are inputted or shown. Localizing numbers is possible: Ex-
cel allows commas as decimal separators for numbers, how-
ever this is not a feature of any text based programming lan-
guages known to the authors, although OCaml allows the
placement of underscore within an integer literal for read-
ability, e.g. 1_00_00_00 is valid.

3.6 Characters ‘without meaning’

Some languages contain characters that do not change the
meaning of a word, but are written to express something
else. For example, Arabic has a tatweel character (see Fig-
ure 3). The tatweel, is the unicode character name (U+640
Arabic Tatweel) that originates from the Kashida. A Kashida
is a curvilinear elongation of certain Arabic letters depend-
ing on the chosen style of writing, and is used for improving
the text in aspects that are not limited to justification, aes-
thetics, and emphasis [2, 18, 25].

Spaces too can have different implications in different lan-
guages. In many Western languages, spaces are used to sep-
arate words and as such have meaning. But many character
based languages like Chinese or Japanese do not commonly
use spaces between words, and neither do alphabet based
Tai-Kadai languages spoken in Thailand and Laos. It will be
hard for language and tool designers to building program-
ming languages for such languages since tooling for cre-
ating programming languages usually assumes that words
and keywords will be separated by spaces.

The Wenyan language, trying to be close to Classical Chi-
nese, mandates the 3 character at the end of an if statement.
The production in the Wenyan specification is as follows:'
if_statement : IF if_expression '#'
statement+ (ELSE statement+)? FOR_IF_END ;

Making a character without direct meaning mandatory
is an interesting decision which deviates from what is com-
mon in programming language design, where typically key-
words are used that have explicit meaning.

Bhttps://wy-lang.org/spec.html

SPLASH-E ’23, October 25, 2023, Cascais, Portugal

el ML o4 — 1
- - 296 A d a3

Figure 3. Examples of the tatweel character (in red) as used
in Arabic modern typography to prolong words. Multiple
tatweel characters can be attached to make a longer tatweel.
(34]

3.7 Diacritics

Many languages make use of diacritics to modify letters,
such as the accent accute (on the a: 4), accent grave (a) and
accent circumflex (4) in French. These are sometimes used
to indicate prosody, in Dutch for example an accent is used
to indicate stress on a syllable. In other languages accents
can also change the meaning of a (written) word. In French,
‘12’ means ‘there’ while ‘la’ means ‘the’ but both words are
pronounced the same.

When designing a programming language for a language
with accents, such as French, an interesting open question
is how to handle diacritics in various cases. One of such
cases is keywords, if a keyword is translated with a word
that has accents, how to thread the equivalent word without
diacritics? For example, in French, ‘repeat’ is translated as
‘répete’, which is used in some programming languages for
repetition (for example Quorum [36]). If répete 3 foisis
the correct code, do we also allow repete 3 fois or will
that lead to an error message? If we do not see repete as an
alternative to répete, is it still allowed as a variable name?
These question are especially interesting for teaching lan-
guages of which the users might not yet know the correct
use of diacritics on all words, such as educational languages.

If we allow all characters in variable names including let-
ters with diacritics, another problem arises, similar to case
sensitivity, which we could call diacritic sensitivity: do words
with and without diacritics (such as quantité and quantite)
refer to the same variable, or to different ones? Most lan-
guages that support non-Latin variable names currently are
diacritic sensitive, i.e. if in one program, a name with and
without accents is used (1a and 1a) these point to different
objects, although we suspect this is a matter of tooling than
a deliberate choice, since most underlying frameworks do
not capture the fact that that certain letters are interchange-
able.

In addition to accents, a similar question can be posed for
letters that are modifications of letters in different ways than
with accents, such as c-cedilla (¢) in Albanian and Turkish.

3.8 Alternative keywords

Traditionally, programming languages use exactly one key-
word for a concept. However, this limitation makes it hard
to fully support a broad range of natural languages. One

https://wy-lang.org/spec.html

SPLASH-E ’23, October 25, 2023, Cascais, Portugal

example where a user might need the support of multiple
keywords for one concept is in the case of gendered words.
Arabic for example has gendered nouns; a noun can be ei-
ther masculine or feminine. This will have consequences
on the forms of verbs and demonstrative pronouns, among
other things. In programming, identifier names are often
nouns and as such they will be gendered in some languages.
This makes the translation of programming keywords that
manipulate variables dependant on their gender as well. In
Section 3.1, we discussed how the word ‘is’ could have mul-
tiple ways of translating it in Arabic depending on the con-
text. One possibility when translating ‘is” as a demonstra-
tive pronoun can have it as s if it follows a masculine vari-
able name but as * when the variable name is feminine.
Similarly, when translate the word equals could have either
the word ¢ s or (s s depending on the variable’s gender.

Some languages allow for multiple different keywords for
similar concepts. For example, Arabic Lisp [10] translates
the keyword NIL to two different keywords in Arabic de-
pending on the context: ¢!J8if it refers to an empty list, or
Uas if it refers to false. Another example in Arabic is the
translation ‘to’. Depending on whether you write the stan-
dard or Egyptian Arabic, the word ‘to’ may be written as
or Y, with the only difference being the two dots under the
last letter. The dots are a special type of diacritic, it is not
simply a mark on around the letter, but part of the letter. To
accommodate for the two variants of Arabic, Ebda3 allows

both I .1

3.9 Localized punctuation characters

As mentioned in the introduction, many cultures use punc-
tuation characters that are different from the ones commonly
used in English. The list is very long, but a few notable ex-
amples include:

Symbols for quotation While single and double quo-
tation marks (... and “.”) are common in English,
other cultures also use guillemets «...» (French), re-
versed guillemets (Danish) »..«, or corner brackets [
...] (Chinese).

Parentheses Chinese uses different but very similar sym-
bols. In right to left languages the parentheses change
places; coming from the right, the first bracket we en-
counter is).1

Question marks and exclamation marks Spanish uses
an inverted question mark and exclamation mark at
the beginning of a sentence, Greek uses ;.

Commas Arabic uses a comma that points rightwards
and upwards: <.

For any of the above characters and numerous other, choices
will have to be made whether or not to allow them in code.

“http://ebda3lang.blogspot.com/
5This problem is solved in many cases by fonts that show a closing bracket
but save an opening bracket to not confuse parsers

Alaaeddin Swidan and Felienne Hermans

Can ¢ be used as a list separator? Do we allow guillemets to
start and close string values?

An interesting and related question is whether we should
allow multiple symbols. Should we allow both English brack-
ets and Chinese brackets for function calls so Chinese speak-
ers can use theirs without issues? In a case where a question
mark is used, such as in Rust when opening a file: let f
= File::open("data.txt")?; should it start with an in-
verted question mark so it reads more natural for Spanish
speakers? Traditionally, multiple symbols for similar roles
in programming have not been common, but it could be pos-
sible to allow for different symbols such as Chinese brackets,
Arabic commas or optional inverted question marks.

3.10 Right to left support
There are multiple issues when it comes to supporting writ-
ing and editing text in right to left (RTL) languages. The
first issue is the alignment: RTL text should be aligned cor-
rectly to the right side of the screen towards the left. Sec-
ondly, there is the direction of letters and words in a sen-
tence. Some editors fail to render RTL text correctly, flip-
ping the order: the first letter in a RTL word becomes the
last. Thirdly, ligatures: in some RTL languages (like Arabic),
letters have different forms depending on their position in a
word to allow for connecting letters together. Many editors
fail to respect this, and split the letters, rendering the text
very hard or impossible to read.

In the case of Arabic, two websites'® collect images of
situations when the typing of Arabic words or sentences is
wrong.

16

Wolfram Mathematica | HOME EDITION |
------ b=
In[3]:= '.):g' gl i‘J-" ”(QJLQL“)LPJ\A"
------ B
Out[3]= HC‘:" él tU(' ;(\JLCLJL/J')A

® O O
—————
Galatl gl g o)

Tdd 1Jad> | Joslza

Figure 4. Right to left support when typing Arabic. Top

(Mathematica): direction flipped for both sentence and
words, and letters disconnected. Correct representation is
shown in the green box. Bottom (Sublime): from Sublime
text, the window’s title is correctly represented, but the text
in the editing area has direction flipped for the sentence and
words, and letters disconnected.

18 https://notarabic.com/,https://isthisarabic.com/

http://ebda3lang.blogspot.com/
https://notarabic.com/
https://isthisarabic.com/

A Framework for the Localization of Programming Languages

3.11 Multi-lingual programming

Another aspect to take into account in designing a truly in-
clusive programming language experience is the use of mul-
tiple languages intermixed. Many people around the world
are native speakers of not one but two or even three lan-
guages. The BBC estimates that between 60 and 75% of peo-
ple are bilingual.!” For bilingual people, being constrained
to one of their native languages while programming is limit-
ing, as they often switch languages when speaking or writ-
ing. Vogel et al. [40] argues that translanguaging pedago-
gies, i.e. ways of teaching in which multiple natural lan-
guages are used, can be beneficial in learning programming,.

Another reason to make programming languages multi-
lingual is not for the bilingual speaker, but for a person
learning English and programming at the same time. This
is named by Guo [15] as a core difficulty in learning to pro-
gram for non-native speakers. When a programming lan-
guage allows for the native language of the learner but also
English, they can use their own native languages initially,
and later on mix in more English keywords as they learn
them, easing a transition to a fully English language later
on.

There are programming languages supporting multiple nat-
ural languages. For instance, ALGOL 68 supported several
natural languages other than English. There is also Rapira [3]
built with Russian, English, and Moldovan variants. Rap-
ture'®, a modern implementation of Rapira, supports Rus-
sian and English keywords that can be used together in one
file. Finally, BabylScript!® supports 12 different languages,
which can also be mixed within a file (although not within
statements).

3.12 Error messages

Programming language design includes the design of error
messages, which are also shown in English for most English
language programming languages. However, as we have
outlined in Section 2, error messages in English can be a
substantial barrier for non-English users. Error messages,
in principle, can be localized with relative ease, compared
to keywords or productions, however, error messages are
not often localized for professional languages. Educational
languages do sometimes support localized error messages,
for example in Hedy and Scratch.

4 Application of the framework to existing
languages
In the above, we described aspects of programming languages

that language designers could take into account when local-
izing a language, and that people, for example educators,

Thttps://www.bbc.com/future/article/20160811-the-amazing-benefits-of-
being-bilingual

Bhttps://github.com/mattmikolay/rapture
Phttp://www.babylscript.com/

SPLASH-E ’23, October 25, 2023, Cascais, Portugal

can use to decide whether a localized language fits their
teaching needs.

In this section, we demonstrate the applicability of our
framework to a set of 12 programming languages.

Table 1 presents an overview of programming languages.
Since there is a large set of very diverse localized program-
ming languages to present, we aimed to find at least one
programming language for each of the aspects of the frame-
work (the rows of Table 1) and then scored these languages
on all other aspects.

The legend of the table is as follows. The first row (Align-
ment) indicates whether the language is a direct translation
of an existing language (T) or is a newly designed language
(N). The other rows follow this scheme:

e indicates that the aspect is fully supported in the pro-
gramming language. For example, Scratch fully sup-
ports non-Latin variable names.

o indicates that the aspect is partly supported in the pro-
gramming language. For example, ebda3 has a o for
diacritics because it supports some, but not all diacrit-
ics in Arabic. Aspects that are partly supported are
explained in more depth in the accompanying text.

o indicates that the aspect is not supported in the pro-

gramming language. For example Hedy does not sup-

port productions differing from the original (English)
ordering.

indicates that the aspect is not applicable. For exam-

ple, Snap! does not use punctuation characters such

as brackets for functions, or commas for list creation

and therefore these they cannot be localized.

In the following text, we discuss the languages in the or-
der of the table. For all languages, we discuss features that
are partly supported by the languages and explain why they
are only partly present, and we discuss selected features that
are of special interest.

4.1 Scratch

Scratch does not generally support customizeable produc-

tion orders, the order of keywords is as is defined in the

language specification. Only when a user creates their own

custom blocks, they can choose to add labels in between ar-

guments, allowing for the creation of a block that expresses,

for example, print argument_1 uitinDutch. Asexplained
earlier Scratch does not allow for the use of non-English nu-
merals. Scratch largely supports right to left programming:

the UI switches to right to left, also inverting the blocks.

However, misplaces punctuation, see Figure 5.

4.2 Snap!

Like Scratch, Snap! allows the creation of custom blocks
with labels in between arguments of the block, so that it is
possible to create blocks that support separable verbs in a

https://www.bbc.com/future/article/20160811-the-amazing-benefits-of-being-bilingual
https://www.bbc.com/future/article/20160811-the-amazing-benefits-of-being-bilingual
https://github.com/mattmikolay/rapture
http://www.babylscript.com/

SPLASH-E ’23, October 25, 2023, Cascais, Portugal

Alaaeddin Swidan and Felienne Hermans

Table 1. A application of the framework to a set of programming languages

Aspect/Prog Language Scratch Snap! Dolittle Ebda3 < Wenyan Excel PSelnt Rapture Hedy Hindi Linotte
Language Multi Multi Japanese Arabic Arabic Chinese Multi Spanish Russian Multi Hindi French

Alignment N N N N T N T N T N T N
Non-English keywords ° ° ° ° ° ° ° ° . ° . °
Non-Latin variable names ° ° . ° ° ° . o . ° ° °
Non-English productions o ° - - . o ° - - - °
Non-English numerals - - - - ° . ° - - ° - -
Characters without meaning - - - - ° ° - - - o - -
Diacritics ° . o o] o - ° o .] °
Alternative keywords - - - o - ° - ° o ° - -
Localized punctuation o o o o o ° ° - - ° - -
Right to left support o - o ° ° o ° - - ° o o
Multi-lingual programming - - - - - - - ° o - -
Error messages o o) o o -) ° -) °)

[v sw wsew <5SI Ebda3 is diacritic sensitive, the equivalent W and =S,

T without the hamza, will produce syntax errors. However,
e sl w @ (R . . .

there is only one special case where Ebda3 allows multiple

Q3 - - versions of a keyword. This happens when writing some

\((Q A w@ @ letters with dots, a special type of Arabic diacritics, and be-

5 cause of historical differences between standard and Egyp-

Figure 5. Scratch rendering the exclamation mark in two
ways, correct in the palette and in the programming field,
but incorrect in the execution.

natural way. This customization however is not available
for built-in blocks.

4.3 Dolittle

Dolittle is a Japanese programming language which has a lot
of good support for an authentic Japanese programming ex-
perience, such as a Japanese word order in productions. In-
terestingly enough, they do still use some English concepts
in the language and the examples, such as English numerals.
While their code uses the Japanese versions of characters,
such as Japanese round brackets, they also use exclamation
marks. Classroom experiments by the authors of Dolittle
show that the use of exclamation mark is confusing to stu-
dents, since it is not commonly used in Japanese [24].

4.4 Ebda3

Ebda3 is an Arabic programming language and is inspired
in its style by multiple other programming languages such
as C++ and Python. The only type of diacritics the lan-
guage supports is the hamza () which is a sign in the Ara-
bic script that represents the glottal stop. This sign can be
a standalone letter, but it can be added on top or below the
basic three vowels in Arabic. Some of Ebda3 keywords in-
clude the hamza sign with the vowels, for example W and

tian Arabic on how to write those letters. An example is the
keyword ! which is the translation of ‘to’, as mentioned
before in Section 3.8.

In the same way, Ebda3 partially supports Arabic specific
punctuation. For example, the Arabic comma, that we men-
tion in Section 3.9, is supported as a list separator. How-
ever, the decimal comma, which is similar to the ones used
in Dutch ¢ is not supported. Only the dot is accepted as
a decimal separator. Moreover, the tatweel character (see
Section 3.6) is not allowed in keywords. Finally, although
Ebda3 is a programming language targeting Arabic speak-
ers, the production of the sentences is affected by the English-
based programming languages.

4.5 B

<8 20 supports Arabic symbols such as the Arabic question
mark and comma. It is also the only language we encoun-
tered apart from Hedy that accepts Arabic numerals, how-
ever, it only accepts these numerals and not the English
ones. We think this is because the language is made as part
of an art project to show the beauty of the Arabic language
in a digital context, hence the focus on Arabic.

Similar to Ebda3, B accepts keywords with the hamza
such as 13, also being diacritic sensitive in this case. To the
best of our knowledge, < is the only Arabic language that
allows the tatweel character (see Section 3.6) in keywords,
and so does Hedy when used in Arabic. The error messages

DTransliterated as ‘Qalb’, pronounced as ‘Elb’ and meaning heart.

A Framework for the Localization of Programming Languages

are mostly Arabic, but sometimes they include English syn-
tactic terminology such as null. Right to left support is sup-
ported as expected. The localized punctuation is partially
supported though. The language supports the Arabic ques-
tion mark in multiple keywords such as a3 and ¢ . The
Arabic comma is also supported but as a decimal separator,
which is not the standard way of writing decimal numbers
in Arabic, which typically uses the Latin comma in numbers
(¥,) ¢ is 3,14 for pi rounded to 2 decimals).

Because it is a translation of lisp, the productions some-
times sound a bit counter-intuitive when compared to na-
tive Arabic examples. For example, for some multi-word
keywords the creator replaced the space between the words
with a hyphen: 9 s - xS (meaning ‘greater or equal?’).
This would not be usually used in this way, and breaks the
flow of the ligatures in the words.

4.6 Wenyan

Wenyan is by far the most ‘localized’ language considered
in this paper [7]. It is designed to support a fully Chinese
programming experience and succeeds at that well, allow-
ing for Chinese order of keywords in productions, working
with Chinese numerals, and the addition of characters that
add meaning but not semantics like 2. It also allows for al-
ternatives, for example both & # and 4~7 can be used to
declare a variable, differing in their meaning only slightly.
Given that, is interesting that Wenyan does not have Chi-
nese error messages, but English ones. As such, it would be
very hard to actually use by people without an understand-
ing of English, especially learners.

4.7 Excel

Excel is probably the most widely used programming lan-
guage that supports extensive localization. Non-English nu-
merals can be used and work out of the box, if you sum two
numbers using Arabic numerals, the result will also be pre-
sented in Arabic numerals, and one worksheet might even
mix English numerals with other systems. Localized ver-
sions also support different decimal separators, although
these, for obvious reasons, cannot be mixed. The biggest
missing feature might be the lack of multilingual support;
one cannot mix one of the dozens of languages it supports
with each other, or with English.

4.8 PSelnt

PSelnt supports diacritics, although not explicitly mentioned
in their documentation. The language is diacritic insensitive
in that sense: the keyword Segun, for example, can be writ-
ten as Segun.

PSelnt provides an ‘flexible syntax’ option. When that op-
tion is enabled, the syntax can be closer to Spanish sentence
production, and different keywords should be used for dif-
ferent grammatical rules, as such:

Algoritmo example

SPLASH-E ’23, October 25, 2023, Cascais, Portugal

var_a Es ENTERO
var_x, var_y Son ENTEROS
FinAlgoritmo

In the previous example, PSelnt allows the use of differ-
ent verbs Es and Son, equivalent to Is and Are in English, to
reflect the number of variables being defined. The same ap-
plies for the integr type used, in singular and plural forms,
ENTERO and ENTEROS. The language is sensitive to the
native grammatical rules, thus a syntax error will be shown
when using the Es instead of Son, and vice versa.

Spanish-specific symbols are not allowed, such as the comma

for decimals or the special characters ; and ; indicating the
beginning of a question or an exclamatory sentence respec-
tively. PSelnt is designed for Spanish speakers in mind, that
is why we do not find support to non-Latin and Right-to-left
text and numerals in the language.

4.9 Rapture

Rapture is a modern implementation of an old multi-lingual
language, Rapira, that was Russian, Moldovan, and English.
Rapture as a modern implementation however supports Rus-
sian and English only. There is one special case in where
Rapture translates multiple English keywords into one Rus-
sian keyword: the English version uses the terminating lex-
eme fi for the if statement, and similarly esac to end the
case statement. However, the Russian version has the ‘Bce’
as the terminating lexeme for both the if and case state-
ments. Moreover, Rapture is one of only two languages in
Table 1 that support multi-lingual programming. One can
use keywords in English and Russian and freely mix them.

4.10 Hedy

Hedy [13, 17] is a gradual language made for education, us-
ing language levels leading up to Python. Hedy was partly
multi-lingual from its inception in 2020 and has since added
anumber of features to support localization. Hedy supports
some characters without direct meaning, for example it can
handle the tatweel within Arabic keywords. Hedy also sup-
port alternative keywords in several situations, for example
both the male and female versions of is in Arabic. Hedy
keywords are also not diacritic sensitive, in French one may
use repete or repéte for a loop. Localized non-letter char-
acters can also be processed, such as the Arabic comma.

Multi-lingual programming is supported, but only Eng-
lish can be mixed with other languages. Mixing two non-
English languages is not supported.

4.11 Hindi

Hindi supports non-English numerals partially, including
Hindi numerals (see Figure 3.4). When using them in pro-
grams, no syntax error is shown and thus the program passes

SPLASH-E ’23, October 25, 2023, Cascais, Portugal

the build phase. However, a run-time error causes the pro-
gram to crash. The language does support diacritics in key-
words such as Q% Hindi is diacritic sensitive in this case.

4.12 Linotte

Linotte allows for diacritics in keywords, such as ‘carré’, ‘dé-
place’, and ‘espéces’. However it is diacritic sensitive, which
means ‘carre’ without the accent, for instance, is not ac-
cepted and a syntax error is shown. Linotte does not sup-
port French specific symbols, for example the comma’s in
decimal numbers and the guillemets, the special quotation
marks common in French text « and ». Linotte presents it-
self as a language that is close to the natural French, and
that it is easy to start learning programming for children
with the language. For that, we see they allow the program-
mer to be closer to the sentence production in French by
using articles. The language support the following articles
that can be used when defining a variable of a built-in or
custom datatype : ‘le’, 1a’, T’ ’, ‘les’, ‘du’, ‘un’, ‘une ”, ‘mon’,
‘ma’, ‘ton’, ‘ta’, and ‘tes’. One can use them in this way:

prénom est un texte (meaning: name is a text)
prénom prend "Clément"(meaning: name takes ”Clément”)

The language follows native language rules and grammar
when using the articles. As a result, a random article can-
not replace the ‘un’ in the example above. The articles’ use
is optional, though. One can write the variable definition
above as prénom est texte. Although the programming
language is french they have a partial support for other na-
tive languages. Variable names can be non-Latin, also string
variables can contain text in non-Latin languages: the editor
and the language show them normally as outputs.

4.13 Summary

In summary, we see that while many languages cater to
some aspects of localization, they often do not do well on all
aspects. Especially notable are numerals, which are rarely
supported, even in non-English languages, while, techni-
cally, this would be relatively easy to address; certainly eas-
ier than localized keywords in a textual language. Multi-
lingual programming is also rarely considered, even languages
which allow for programming in multiple languages, such
as Scratch, Snap! and Excel, do not allow for the mixing
of languages. While this choice is understandable, since al-
lowing different languages would require more effort, and
count lead to confusing situations, the absence of multi-lingual
support means that these languages do not cater for vari-
ous scenarios including teaching and multi-lingual business
contexts.

Alaaeddin Swidan and Felienne Hermans

5 Discussion

In this section we discuss a variety of factors take can be
taken in to consideration when localizing languages. It also
discusses threads to validity.

5.1 Arguments against localization of programming
languages

Exploring the technical challenges of localizing program-
ming languages is always done in context of the question
whether itis ‘needed’ or ‘good’ to be inclusive of non-English
programmers by supporting them to program in their own
native language. Since we have been working on this topic,
we have received consistently received push back on the
idea (including in the reviews for this paper), so here we
collect and partly rebut some arguments.

5.1.1 “Just” Learn English. The often heard reason against
lozalication is that if you want to program, you should just
learn English.?! This is certainly possible: the millions of
people speaking non-English native languages that are pro-
grammers (including both authors of this paper) are exem-
plars of that. However, there are audiences for whom this is
less feasible, most notably learners, but also casual or end-
user programmers. They might not have the time or en-
ergy to learn programming and also English. Also, people
don’t know what they don’t know. Trying to use your own
numerals, quotes or comma’s and subsequently being con-
fronted with error messages might lead people to conclude
programming is hard, or will not serve their needs, and they
might drop out before realizing they had to use other char-
acters.

5.1.2 The community will be split. This is an often heard
argument, which is also noted by Atwood: Tfeverybody blogs

and develops in English ... you will have better chances of find-
ing an answer to your problem.’. Interestingly enough, on our

personal experience, this question is exclusively asked by

people with a great command of English, because they have

grown accustomed to be able to access the repository of in-
formation on programming with ease. People who struggle

to read English do not worry about a future world in which

a lot of content is not readable to them, since that is already

the case for them.

5.1.3 Machine translation will fix this. A final argu-
ment that we often here is that translating programming
languages is not needed, since machine translations are, or
will soon be, good enough to solve the issue. Sadly how-
ever, it is a known fact that machine translation does not
work so well for languages with smaller populations and
smaller online repositories (often because of lower internet
connectivity among their speakers)[14, 19]. Also, since ma-
chine translation tools are built both by the community also

Zhttps://blog.codinghorror.com/the-ugly-american-programmer/

https://blog.codinghorror.com/the-ugly-american-programmer/

A Framework for the Localization of Programming Languages

building today’s programming languages, and by using to-
day’s programming languages, it is very likely that they will
have issues with non-English letters, numbers and charac-
ters similar to those described in this paper. #

5.2 The importance of multi-lingual programming

One argument that is often named by programmers as a ar-
gument against localization of programming languages, is
that it is confusing and potentially error-prone to go back
and forth between languages. This highlights why one of
our aspects, namely multi-lingual programming, is more im-
portant than one might assume. If you know keywords in
multiple languages, the easiest default is not being forced
to go back and forth, and being allowed to use keywords in
multiple languages in one formula or program. Especially
for learners, gradually introducing more English keywords
is likely going to be less painful than a full switch at a certain
point.

5.3 Transfer from non-English

A relatively recent topic in programming education is re-
search into how to transfer from one programming language
to another [38, 39]. However, we do not yet have litera-
ture on how to best transfer from a localized programming
language into an English one. In transfer research, two dif-
ferent strategies are often described: hugging which is de-
creasing the distance between the two domains, and bridg-
ing which is explicitly encouraging noticing the similarities
between concepts. It is not clear what hugging and bridging
would look like in the transfer into an English programming
language. One can imagine a hugging strategy in which a
learner write a program in their native language first and
then translates in into English, or a bridging strategy in
which a problem is solved in more abstract notation such as
a flow chart and then into the new, English, programming
language, but different ways are imaginable too, and which
is more effective is a topic for future work. It is also not at all
clear at what moment in time a potential switch should take
place, after a learned concept, or after mastering a larger set
of concepts.

5.4 Ergonomic issues

In this paper we have described aspects of languages that
could be localized. However, the design of languages usable
for non-English speakers also has ergonomic factors.

Firstly, there is the assumption which characters will be
easily available on keyboard. Not all keyboards, for exam-
ple, have direct access to the back tick ; Italian keyboard typ-
ically lack it, requiring you to using ALT and two numeric
keys, making it a less than ideal choice for programming
language syntax.

22Note that both these papers were pre-prints at the time of this paper’s
submission.

SPLASH-E ’23, October 25, 2023, Cascais, Portugal

Furthermore it is very common for European keyboard
setting to use a ‘dead key’ mechanism to be more easily able
to create accented letters (diacritics), such as 4 or é. A dead
key mechanism means that when pressing a dead letter key
(often the back tick, or single or double quote) the character
does not appear immediately. Instead the next character is
awaited, if that is a letter on which the diacritic could be
placed, it is placed on it. If the letter does not have the op-
tion to be modified (k, for example) both the symbol and
letter appear after the second key press. As such, typing
code such as print('allo") without paying attention will
result in print(dllo') which does not compile. Choosing
a single quote as string delimiter thus has an ergonomic im-
pact for programming in certain default language settings.
Of course, these keyboard settings can be changed, however
that too requires both considerable computer skills and a
single use computer which not everyone has access to.

5.5 Threats to validity

This paper has chosen to extract the aspects of the frame-
work from existing programming languages, and as such
does not describe aspects that no languages support yet. Fur-
thermore, some programming languages could be missed
since non-English languages often also have non-English
documentation limiting the accessibility. This paper also
limits its view to aspects of programming languages, and
does not incorporate editors in which these languages are
written.

6 Concluding remarks

The goal of this paper is to introduce a framework encom-
passing aspects of programming languages that can be local-
ized to non-English. This framework can help language de-
signers to make informed decisions about localization, and
help decision makers better choose languages for various
non-English contexts. Our framework includes the localiza-
tion of keywords, numerals, programming constructs and
support for multi-lingual programming.

Future work can be imagined in various directions. Firstly,
the set of programming languages that our framework is ap-
plied to could be extended, studying multiple programming
languages in the same natural language or implementing
the same aspects, giving an even more in-depth view of the
field. Furthermore, our framework can be enriched to in-
clude best practices on how to support the localized aspects,
both in terms of programming language design and in terms
of implementation. We could also explore best practices in
teaching with localized programming languages, especially
in the interesting case of mixed-language classrooms.

SPLASH-E ’23, October 25, 2023, Cascais, Portugal

References

(1]

(10]

(11]

(12]

[13

[utr}

(14]

(15]

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006.
Compilers: Principles, Techniques, and Tools (2nd Edition). Addison-
Wesley Longman Publishing Co., Inc., USA.

Andreu Balius. 2013. Arabic type from a multicultural per-
spective: Multi-script Latin-Arabic type design. ~ Ph.D. Univer-
sity of Southampton. https://eprints.soton.ac.uk/355433/1/Final%
2520PhD%2520thesis_Andreu%2520Balius.pdf

L.S.Baraz, EV. Borovikov, N.G. Glagoleva, P.A. Zemtsov, E.V. Nalimov,
and V.A. Tsikoza. 1987. Rapira Programming Language. (1987). http:
//ershov.iis.nsk.su/ru/node/772586

Youssef Bassil. 2019. Phoenix - The Arabic Object-Oriented Pro-
gramming Language. 67, 2 (2019), 7-11. https://doi.org/10.14445/
22312803/1JCTT-V6712P102

David Bau, D. Anthony Bau, Mathew Dawson, and C. Sydney Pick-
ens. 2015. Pencil Code: Block Code for a Text World. In Proceedings
of the 14th International Conference on Interaction Design and Chil-
dren (Boston, Massachusetts) (IDC ’15). Association for Computing
Machinery, New York, NY, USA, 445-448. https://doi.org/10.1145/
2771839.2771875

Mrwan Ben Idris and Hany Ammar. 2018. The Correlation between
Arabic Student’s English Proficiency and Their Computer Program-
ming Ability at the University Level. 9 (2018), 01-10. https://doi.org/
10.5121/ijmpict.2018.9101

Charles Q. Choi. 2020. World’s First Classical Chinese Programming
Language. IEEE Spectrum (2020). https://spectrum.ieee.org/classical-
chinese

Nils Danielsson and Ulf Norell. 2008. Parsing Mixfix Operators,
Vol. 5836. 80-99. https://doi.org/10.1007/978-3-642-24452-0_5
Sayamindu Dasgupta and Benjamin Mako Hill. 2017. Learning to
Code in Localized Programming Languages. In Proceedings of the
Fourth (2017) ACM Conference on Learning @ Scale (2017-04) (L@S
’17). Association for Computing Machinery, 33-39. https://doi.org/
10.1145/3051457.3051464

Hanan Elazhary. 2009. Arabic Lisp. In Proceedings of the 21st Interna-
tional Conference on Software Engineering & Knowledge Engineering
(SEKE’2009) (Boston, Massachusetts, USA, 2009-07-01). Knowledge
Systems Institute Graduate School, 382-385.

Alejandro Espinal, Camilo Vieira, and Valeria Guerrero-Bequis. [n. d.].
Student ability and difficulties with transfer from a block-based pro-
gramming language into other programming languages: a case study
in Colombia. 0, 0 ([n.d.]), 1-33. https://doi.org/10.1080/08993408.
2022.2079867

Pedro Guillermo Feijoo-Garcia, Keith McNamara, and Jacob Stuart.
2020. The Effects of Native Language on Block-Based Programming
Introduction: A Work in Progress with Hispanic Population. In 2020
Research on Equity and Sustained Participation in Engineering, Comput-
ing, and Technology (RESPECT), Vol. 1. 1-2. https://doi.org/10.1109/
RESPECT49803.2020.9272513

Marleen Gilsing and Felienne Hermans. 2021. Gradual Program-
ming in Hedy: A First User Study. In 2021 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC) (2021-10). 1-9.
https://doi.org/10.1109/vl/hcc51201.2021.9576236

Nuno M Guerreiro, Duarte Alves, Jonas Waldendorf, Barry Haddow,
Alexandra Birch, Pierre Colombo, and André FT Martins. 2023. Hal-
lucinations in large multilingual translation models. arXiv preprint
arXiv:2303.16104 (2023).

Philip J. Guo. 2018. Non-Native English Speakers Learning Computer
Programming: Barriers, Desires, and Design Opportunities. In Pro-
ceedings of the 2018 CHI Conference on Human Factors in Computing
Systems (2018) (CHI ’18). Association for Computing Machinery, 1-14.
https://doi.org/10.1145/3173574.3173970 event-place: New York, NY,
USA.

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Alaaeddin Swidan and Felienne Hermans

Khendum Gyabak and Heriberto Godina. 2011. Digital storytelling in
Bhutan: A qualitative examination of new media tools used to bridge
the digital divide in a rural community school. Computers & Education
57, 4 (Dec. 2011), 2236-2243. https://doi.org/10.1016/j.compedu.2011.
06.009

Felienne Hermans. 2020. Hedy: A Gradual Language for Program-
ming Education. In Proceedings of the 2020 ACM Conference on Inter-
national Computing Education Research (2020) (ICER °20). Association
for Computing Machinery, 259-270. https://doi.org/10.1145/3372782.
3406262 event-place: New York, NY, USA.

Mohamed Hssini and Azzeddine Lazrek. 2011. Design of Arabic Dia-
critical Marks. IJCSI International Journal of Computer Science Issues
8,3 (May 2011). https://ijcsi.org/papers/IJCSI-8-3-2-262-271.pdf
Viet Dac Lai, Nghia Trung Ngo, Amir Pouran Ben Veyseh, Hieu
Man, Franck Dernoncourt, Trung Bui, and Thien Huu Nguyen. 2023.
Chatgpt beyond english: Towards a comprehensive evaluation of
large language models in multilingual learning. arXiv preprint
arXivi2304.05613 (2023).

Outi Laiti. 2016. The Ethnoprogramming Model. In Proceedings of the
16th Koli Calling International Conference on Computing Education Re-
search (Koli, Finland) (Koli Calling ’16). Association for Computing
Machinery, New York, NY, USA, 150-154. https://doi.org/10.1145/
2999541.2999545

Luis A. Leiva and Vicent Alabau. 2015. Automatic Internationaliza-
tion for Just In Time Localization of Web-Based User Interfaces. 22, 3
(2015). https://doi.org/10.1145/2701422

William Judson LeVeque and David Eugene Smith. 2022. Numerals
and numeral systems. Encyclopedia Britannica.

Aaron Marcus, Nuray Aykin, Apala Lahiri Chavan, Donald L. Day,
Emilie West Gould, Pia Honold, and Masaaki Kurosu. 2000. Cross-
Cultural User-Interface Design: What? So What? Now What?. In CHI
’00 Extended Abstracts on Human Factors in Computing Systems (2000)
(CHI EA °00). Association for Computing Machinery, 299. https://doi.
0org/10.1145/633292.633468 event-place: New York, NY, USA.

Hu. Ming and Emi Keiji. 2017. Educational Report of Programming
Language Dolittle for Foreign Students. Journal of the Native Ameri-
can and Indigenous Studies Association 11 (Jan. 2017), 30-33.

Titus Nemeth. 2019. On Arabic justification, part 1 - a
brief history. https://research.reading.ac.uk/typoarabic/on-arabic-
justification-part-1/

Momed A. A. Neves and Seraphin Desire Eyono Obono. 2013. On
the perceived usefulness of the localization of compilers in African
indigenous languages. (Feb. 2013). https://doi.org/10.7763/IJIET.2013.
V3.243 Accepted: 2014-06-24T10:46:24Z Publisher: IJIET.

Ibrahim Nnass, Michael A. Cowling, and Roger Hadgraft. 2022. Iden-
tifying the Difficulties of Learning Programming for Non-English
Speakers at CQUniversity and Sebha University. Journal of Pure &
Applied Sciences 21, 4 (Oct. 2022), 290-295. https://doi.org/10.51984/
jopas.v21i4.2258 Number: 4.

Yogendra Pal and Sridhar Iyer. 2015. Effect of Medium of Instruc-
tion on Programming Ability Acquired through Screencast. In 2015
International Conference on Learning and Teaching in Computing and
Engineering. 17-21. https://doi.org/10.1109/LaTiCE.2015.38

Yizhou Qian, Peilin Yan, and Mingke Zhou. 2019. Using Data to Under-
stand Difficulties of Learning to Program: A Study with Chinese Mid-
dle School Students. In Proceedings of the ACM Conference on Global
Computing Education (2019) (CompEd ’19). Association for Computing
Machinery, 185-191. https://doi.org/10.1145/3300115.3309521 event-
place: New York, NY, USA.

Hussam Hatem Abdul Razaq, Ayedh Shahadha Gaser, Mazin Abed
Mohammed, Esam Taha Yassen, Salama A. Mostafad, Subhi R. M.
Zeebaree, Dheyaa Ahmed Ibrahim, Mohd Khanapi Abd Ghania,
Rabah N. Farhan, Hussam Hatem Abdul Razaq, Ayedh Shahadha
Gaser, Mazin Abed Mohammed, Esam Taha Yassen, Salama A.
Mostafad, Subhi R. M. Zeebaree, Dheyaa Ahmed Ibrahim, Mohd

https://eprints.soton.ac.uk/355433/1/Final%2520PhD%2520thesis_Andreu%2520Balius.pdf
https://eprints.soton.ac.uk/355433/1/Final%2520PhD%2520thesis_Andreu%2520Balius.pdf
http://ershov.iis.nsk.su/ru/node/772586
http://ershov.iis.nsk.su/ru/node/772586
https://doi.org/10.14445/22312803/IJCTT-V67I2P102
https://doi.org/10.14445/22312803/IJCTT-V67I2P102
https://doi.org/10.1145/2771839.2771875
https://doi.org/10.1145/2771839.2771875
https://doi.org/10.5121/ijmpict.2018.9101
https://doi.org/10.5121/ijmpict.2018.9101
https://spectrum.ieee.org/classical-chinese
https://spectrum.ieee.org/classical-chinese
https://doi.org/10.1007/978-3-642-24452-0_5
https://doi.org/10.1145/3051457.3051464
https://doi.org/10.1145/3051457.3051464
https://doi.org/10.1080/08993408.2022.2079867
https://doi.org/10.1080/08993408.2022.2079867
https://doi.org/10.1109/RESPECT49803.2020.9272513
https://doi.org/10.1109/RESPECT49803.2020.9272513
https://doi.org/10.1109/vl/hcc51201.2021.9576236
https://doi.org/10.1145/3173574.3173970
https://doi.org/10.1016/j.compedu.2011.06.009
https://doi.org/10.1016/j.compedu.2011.06.009
https://doi.org/10.1145/3372782.3406262
https://doi.org/10.1145/3372782.3406262
https://ijcsi.org/papers/IJCSI-8-3-2-262-271.pdf
https://doi.org/10.1145/2999541.2999545
https://doi.org/10.1145/2999541.2999545
https://doi.org/10.1145/2701422
https://doi.org/10.1145/633292.633468
https://doi.org/10.1145/633292.633468
https://research.reading.ac.uk/typoarabic/on-arabic-justification-part-1/
https://research.reading.ac.uk/typoarabic/on-arabic-justification-part-1/
https://doi.org/10.7763/IJIET.2013.V3.243
https://doi.org/10.7763/IJIET.2013.V3.243
https://doi.org/10.51984/jopas.v21i4.2258
https://doi.org/10.51984/jopas.v21i4.2258
https://doi.org/10.1109/LaTiCE.2015.38
https://doi.org/10.1145/3300115.3309521

—

—

[

—

A Framework for the Localization of Programming Languages

Khanapi Abd Ghania, and Rabah N. Farhan. 2019. Designing and Im-
plementing an Arabic Programming Language for Teaching Pupils.
54,3 (2019). https://doi.org/10.35741/issn.0258-2724.54.3.11

Kyle Reestman and Brian Dorn. 2019. Native Language’s Effect on
Java Compiler Errors. In Proceedings of the 2019 ACM Conference on
International Computing Education Research (ICER °19). Association
for Computing Machinery, New York, NY, USA, 249-257. https://doi.
org/10.1145/3291279.3339423

Bertrand Roehner. 2015. Translation into any natural language of the
error messages generated by any computer program. https://doi.org/
10.48550/arXiv.1508.04936 arXiv:1508.04936 [cs].

Patricia Russo and Stephen Boor. 1993. How Fluent is Your Interface?
Designing for International Users. In Proceedings of the INTERACT *93
and CHI *93 Conference on Human Factors in Computing Systems (1993)
(CHI *93). Association for Computing Machinery, 342-347. https://
doi.org/10.1145/169059.169274 event-place: New York, NY, USA.
Huda Smitshuijzen AbiFarés. [n.d.]. The Big Kashida Secret. https:
/lwww .khtt.net/en/page/1821/the-big-kashida-secret

Adalbert Gerald Soosai Raj, Eda Zhang, Saswati Mukherjee, Jim
Williams, Richard Halverson, and Jignesh M. Patel. 2019. Effect of
Native Language on Student Learning and Classroom Interaction in
an Operating Systems Course. In Proceedings of the 2019 ACM Con-
ference on Innovation and Technology in Computer Science Education
(ITiCSE ’19). Association for Computing Machinery, New York, NY,
USA, 499-505. https://doi.org/10.1145/3304221.3319787

Andreas Stefik and Richard Ladner. 2017. The Quorum Programming
Language (Abstract Only). In Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education (2017) (SIGCSE
’17). ACM, 641-641. https://doi.org/10.1145/3017680.3022377 event-
place: New York, NY, USA.

SPLASH-E ’23, October 25, 2023, Cascais, Portugal

[37] Alaaeddin Swidan, Alexander Serebrenik, and Felienne Hermans.
2017. How do scratch programmers name variables and procedures?.
In 2017 IEEE 17th International Working Conference on Source Code
Analysis and Manipulation (SCAM) (2017). IEEE, 51-60. https://doi.
org/10.1109/scam.2017.12

[38] Ethel Tshukudu and Quintin Cutts. 2020. Semantic Transfer in Pro-
gramming Languages: Exploratory Study of Relative Novices. In Pro-
ceedings of the 2020 ACM Conference on Innovation and Technology
in Computer Science Education (2020-06) (ITiCSE °20). Association for
Computing Machinery, 307-313. https://doi.org/10.1145/3341525.
3387406 event-place: Trondheim, Norway.

[39] Ethel Tshukudu, Quintin Cutts, Olivier Goletti, Alaaeddin Swidan,
and Felienne Hermans. 2021. Teachers’ Views and Experiences on
Teaching Second and Subsequent Programming Languages. https:
//eprints.gla.ac.uk/250525/ Conference Name: 17th ACM Conference
on International Computing Education Research (ICER 2021) ISBN:
9781450383264 Meeting Name: 17th ACM Conference on Interna-
tional Computing Education Research (ICER 2021) Pages: 294-305
Publisher: ACM.

[40] Sara Vogel, Christopher Hoadley, Ana Rebeca Castillo, and Laura
Ascenzi-Moreno. 2020. Languages, literacies and literate pro-
gramming: can we use the latest theories on how bilingual peo-
ple learn to help us teach computational literacies? Com-
puter Science Education 30, 4 (Oct. 2020), 420-443. https://doi.
org/10.1080/08993408.2020.1751525 Publisher: Routledge _eprint:
https://doi.org/10.1080/08993408.2020.1751525.

Received 2023-07-27; accepted 2023-08-24

https://doi.org/10.35741/issn.0258-2724.54.3.11
https://doi.org/10.1145/3291279.3339423
https://doi.org/10.1145/3291279.3339423
https://doi.org/10.48550/arXiv.1508.04936
https://doi.org/10.48550/arXiv.1508.04936
https://doi.org/10.1145/169059.169274
https://doi.org/10.1145/169059.169274
https://www.khtt.net/en/page/1821/the-big-kashida-secret
https://www.khtt.net/en/page/1821/the-big-kashida-secret
https://doi.org/10.1145/3304221.3319787
https://doi.org/10.1145/3017680.3022377
https://doi.org/10.1109/scam.2017.12
https://doi.org/10.1109/scam.2017.12
https://doi.org/10.1145/3341525.3387406
https://doi.org/10.1145/3341525.3387406
https://eprints.gla.ac.uk/250525/
https://eprints.gla.ac.uk/250525/
https://doi.org/10.1080/08993408.2020.1751525
https://doi.org/10.1080/08993408.2020.1751525

	Abstract
	1 Introduction
	2 Background
	2.1 Error Messages
	2.2 Teaching CS in non-English

	3 Localizable aspects of programming languages
	3.1 Alignment with Existing Language
	3.2 Keywords
	3.3 Variable names
	3.4 Productions
	3.5 Numerals and numbers
	3.6 Characters `without meaning'
	3.7 Diacritics
	3.8 Alternative keywords
	3.9 Localized punctuation characters
	3.10 Right to left support
	3.11 Multi-lingual programming
	3.12 Error messages

	4 Application of the framework to existing languages
	4.1 Scratch
	4.2 Snap!
	4.3 Dolittle
	4.4 Ebda3
	4.5 `=11`=11قلب
	4.6 Wenyan
	4.7 Excel
	4.8 PSeInt
	4.9 Rapture
	4.10 Hedy
	4.11 Hindi
	4.12 Linotte
	4.13 Summary

	5 Discussion
	5.1 Arguments against localization of programming languages
	5.2 The importance of multi-lingual programming
	5.3 Transfer from non-English
	5.4 Ergonomic issues
	5.5 Threats to validity

	6 Concluding remarks
	References

